scispace - formally typeset
Search or ask a question
Institution

University of Notre Dame

EducationNotre Dame, Indiana, United States
About: University of Notre Dame is a education organization based out in Notre Dame, Indiana, United States. It is known for research contribution in the topics: Population & Context (language use). The organization has 22238 authors who have published 55201 publications receiving 2032925 citations. The organization is also known as: University of Notre Dame du Lac & University of Notre Dame, South Bend.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a linear relationship between stored electrons and the emission quenching was found for UV-irradiated ZnO colloids with an electron acceptor (O2 or thionine dye).
Abstract: Photoinduced electron accumulation in ZnO nanoparticles results in the bleaching of the exciton band as well as quenching of green emission. In the absence of an electron scavenger, photogenerated electrons are stored near the conduction band edge and promote charge recombination via a nonradiative process. By exposing the UV-irradiated ZnO suspension to an electron acceptor (O2 or thionine dye) the stored electrons are discharged and the original excitonic band and the visible emission are restored. Titration of electrons stored in ZnO nanoparticles with an electron acceptor, thionine dye, shows a linear relationship between stored electrons and the emission quenching. When gold nanoparticles are added to pre-UV-irradiated ZnO colloids, only partial recovery of the emission is seen. Pt nanoparticles on the other hand caused almost complete recovery of the quenched emission as the electrons are discharged into the solution. The charge distribution between UV-irradiated ZnO and gold nanoparticles results i...

477 citations

Journal ArticleDOI
Daniel E. Neafsey1, Robert M. Waterhouse, Mohammad Reza Abai2, Sergey Aganezov3, Max A. Alekseyev3, James E. Allen4, James Amon, Bruno Arcà5, Peter Arensburger6, Gleb N. Artemov7, Lauren A. Assour8, Hamidreza Basseri2, Aaron M. Berlin1, Bruce W. Birren1, Stéphanie Blandin9, Stéphanie Blandin10, Andrew I. Brockman11, Thomas R. Burkot12, Austin Burt11, Clara S. Chan13, Cedric Chauve14, Joanna C. Chiu15, Mikkel B. Christensen4, Carlo Costantini16, Victoria L.M. Davidson17, Elena Deligianni18, Tania Dottorini11, Vicky Dritsou19, Stacey Gabriel1, Wamdaogo M. Guelbeogo, Andrew Brantley Hall20, Mira V. Han21, Thaung Hlaing, Daniel S.T. Hughes4, Daniel S.T. Hughes22, Adam M. Jenkins23, Xiaofang Jiang20, Irwin Jungreis13, Evdoxia G. Kakani24, Evdoxia G. Kakani19, Maryam Kamali20, Petri Kemppainen25, Ryan C. Kennedy26, Ioannis K. Kirmitzoglou27, Ioannis K. Kirmitzoglou11, Lizette L. Koekemoer28, Njoroge Laban, Nicholas Langridge4, Mara K. N. Lawniczak11, Manolis Lirakis29, Neil F. Lobo8, Ernesto Lowy4, Robert M. MacCallum11, Chunhong Mao20, Gareth Maslen4, Charles Mbogo30, Jenny McCarthy6, Kristin Michel17, Sara N. Mitchell24, Wendy Moore31, Katherine A. Murphy15, Anastasia N. Naumenko20, Tony Nolan11, Eva Maria Novoa13, Samantha M. O’Loughlin11, Chioma Oringanje31, Mohammad Ali Oshaghi2, Nazzy Pakpour15, Philippos Aris Papathanos19, Philippos Aris Papathanos11, Ashley Peery20, Michael Povelones32, Anil Prakash33, David P. Price34, Ashok Rajaraman14, Lisa J. Reimer35, David C. Rinker36, Antonis Rokas37, Tanya L. Russell12, N’Fale Sagnon, Maria V. Sharakhova20, Terrance Shea1, Felipe A. Simão38, Felipe A. Simão39, Frédéric Simard16, Michel A. Slotman40, Pradya Somboon41, V. N. Stegniy7, Claudio J. Struchiner42, Claudio J. Struchiner43, Gregg W.C. Thomas44, Marta Tojo45, Pantelis Topalis18, Jose M. C. Tubio46, Maria F. Unger8, John Vontas29, Catherine Walton25, Craig S. Wilding47, Judith H. Willis48, Yi-Chieh Wu13, Yi-Chieh Wu49, Guiyun Yan50, Evgeny M. Zdobnov39, Evgeny M. Zdobnov38, Xiaofan Zhou37, Flaminia Catteruccia24, Flaminia Catteruccia19, George K. Christophides11, Frank H. Collins8, Robert S. Cornman48, Andrea Crisanti11, Andrea Crisanti19, Martin J. Donnelly46, Martin J. Donnelly35, Scott J. Emrich8, Michael C. Fontaine51, Michael C. Fontaine8, William M. Gelbart24, Matthew W. Hahn44, Immo A. Hansen34, Paul I. Howell52, Fotis C. Kafatos11, Manolis Kellis13, Daniel Lawson4, Christos Louis18, Shirley Luckhart15, Marc A. T. Muskavitch23, Marc A. T. Muskavitch53, José M. C. Ribeiro, Michael A. Riehle31, Igor V. Sharakhov20, Zhijian Tu20, Laurence J. Zwiebel37, Nora J. Besansky8 
Broad Institute1, Tehran University of Medical Sciences2, George Washington University3, European Bioinformatics Institute4, Sapienza University of Rome5, Temple University6, Tomsk State University7, University of Notre Dame8, French Institute of Health and Medical Research9, Centre national de la recherche scientifique10, Imperial College London11, James Cook University12, Massachusetts Institute of Technology13, Simon Fraser University14, University of California, Davis15, Institut de recherche pour le développement16, Kansas State University17, Foundation for Research & Technology – Hellas18, University of Perugia19, Virginia Tech20, University of Nevada, Las Vegas21, Baylor College of Medicine22, Boston College23, Harvard University24, University of Manchester25, University of California, San Francisco26, University of Cyprus27, National Health Laboratory Service28, University of Crete29, Kenya Medical Research Institute30, University of Arizona31, University of Pennsylvania32, Indian Council of Medical Research33, New Mexico State University34, Liverpool School of Tropical Medicine35, Vanderbilt University Medical Center36, Vanderbilt University37, Swiss Institute of Bioinformatics38, University of Geneva39, Texas A&M University40, Chiang Mai University41, Oswaldo Cruz Foundation42, Rio de Janeiro State University43, Indiana University44, University of Santiago de Compostela45, Wellcome Trust Sanger Institute46, Liverpool John Moores University47, University of Georgia48, Harvey Mudd College49, University of California, Irvine50, University of Groningen51, Centers for Disease Control and Prevention52, Biogen Idec53
02 Jan 2015-Science
TL;DR: The authors investigated the genomic basis of vectorial capacity and explore new avenues for vector control, sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila.
Abstract: Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover but instead diversify through protein-sequence changes This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts

476 citations

Posted Content
TL;DR: In this paper, the authors examine the market reaction to an anticipated change in the demand for a stock using post-October 1989 data, and find significantly positive (negative) post-announcement abnormal returns that are only partially reversed following additions (deletions).
Abstract: Since October 1989, Standard and Poor s has (when possible) announced changes in the composition of the S&P 500 index one week in advance. Because index funds hold S&P 500 stocks to minimize tracking error, index composition changes since this date provide an opportunity to examine the market reaction to an anticipated change in the demand for a stock. Using post-October-1989 data, we document significantly positive (negative) post-announcement abnormal returns that are only partially reversed following additions (deletions). These results indicate the existence of temporary price pressure and downward-sloping log-run demand curves for stocks and represent a violation of market efficiency.

476 citations

Journal ArticleDOI
TL;DR: In this paper, the authors showed that by tethering the amine to the anion, the stoichiometry of the reaction can be doubled from one CO2 for every two amines (as is the case with aqueous monoethanolamine) to one CO 2 for each amine.
Abstract: Ionic liquids, especially those functionalized with amine groups, show significant potential for a wide variety of CO2 separations, including postcombustion CO2 capture. By tethering the amine to the anion, the stoichiometry of the reaction can be doubled from one CO2 for every two amines (as is the case with aqueous monoethanolamine) to one CO2 for each amine. Moreover, the reaction enthalpy can be actively tuned by the design of the anion, adjusting capacity and regeneration energy. In addition, ILs can be used without added water, further reducing the parasitic energy required for CO2 removal from flue gas.

476 citations

Journal ArticleDOI
03 Jan 2011-Small
TL;DR: A wide range of promising laboratory and consumer biotechnological applications from microscale genetic and proteomic analysis kits, cell culture and manipulation platforms, biosensors, and pathogen detection systems to point-of-care diagnostic devices, high-throughput combinatorial drug screening platforms, schemes for targeted drug delivery and advanced therapeutics, and novel biomaterials synthesis for tissue engineering are reviewed.
Abstract: Harnessing the ability to precisely and reproducibly actuate fluids and manipulate bioparticles such as DNA, cells, and molecules at the microscale, microfluidics is a powerful tool that is currently revolutionizing chemical and biological analysis by replicating laboratory bench-top technology on a miniature chip-scale device, thus allowing assays to be carried out at a fraction of the time and cost while affording portability and field-use capability. Emerging from a decade of research and development in microfluidic technology are a wide range of promising laboratory and consumer biotechnological applications from microscale genetic and proteomic analysis kits, cell culture and manipulation platforms, biosensors, and pathogen detection systems to point-of-care diagnostic devices, high-throughput combinatorial drug screening platforms, schemes for targeted drug delivery and advanced therapeutics, and novel biomaterials synthesis for tissue engineering. The developments associated with these technological advances along with their respective applications to date are reviewed from a broad perspective and possible future directions that could arise from the current state of the art are discussed.

474 citations


Authors

Showing all 22586 results

NameH-indexPapersCitations
George Davey Smith2242540248373
David Miller2032573204840
Patrick O. Brown183755200985
Dorret I. Boomsma1761507136353
Chad A. Mirkin1641078134254
Darien Wood1602174136596
Wei Li1581855124748
Timothy C. Beers156934102581
Todd Adams1541866143110
Albert-László Barabási152438200119
T. J. Pearson150895126533
Amartya Sen149689141907
Christopher Hill1441562128098
Tim Adye1431898109010
Teruki Kamon1422034115633
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

90% related

University of Maryland, College Park
155.9K papers, 7.2M citations

89% related

University of Texas at Austin
206.2K papers, 9M citations

89% related

Pennsylvania State University
196.8K papers, 8.3M citations

89% related

Princeton University
146.7K papers, 9.1M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023115
2022543
20212,777
20202,925
20192,775
20182,624