scispace - formally typeset
Search or ask a question
Institution

University of Oklahoma

EducationNorman, Oklahoma, United States
About: University of Oklahoma is a education organization based out in Norman, Oklahoma, United States. It is known for research contribution in the topics: Population & Radar. The organization has 25269 authors who have published 52609 publications receiving 1821706 citations. The organization is also known as: OU & Oklahoma University.


Papers
More filters
Journal ArticleDOI
T. Aaltonen1, V. M. Abazov2, Brad Abbott3, Bobby Samir Acharya4  +868 moreInstitutions (117)
TL;DR: An excess of events in the data is interpreted as evidence for the presence of a new particle consistent with the standard model Higgs boson, which is produced in association with a weak vector boson and decays to a bottom-antibottom quark pair.
Abstract: We combine searches by the CDF and D0 Collaborations for the associated production of a Higgs boson with a W or Z boson and subsequent decay of the Higgs boson to a bottom-antibottom quark pair. The data, originating from Fermilab Tevatron p (p) over bar collisions at root s = 1.96 TeV, correspond to integrated luminosities of up to 9.7 fb(-1). The searches are conducted for a Higgs boson with mass in the range 100-150 GeV/c(2). We observe an excess of events in the data compared with the background predictions, which is most significant in the mass range between 120 and 135 GeV/c(2). The largest local significance is 3.3 standard deviations, corresponding to a global significance of 3.1 standard deviations. We interpret this as evidence for the presence of a new particle consistent with the standard model Higgs boson, which is produced in association with a weak vector boson and decays to a bottom-antibottom quark pair.

281 citations

Journal ArticleDOI
TL;DR: The direct correlation of rC with climate was significantly weakened if removing the effects of soil properties and C pools, and vice versa, and the complex interconnections in regulating SOC dynamics are revealed.
Abstract: Soil organic carbon (SOC) dynamics are regulated by the complex interplay of climatic, edaphic and biotic conditions However, the interrelation of SOC and these drivers and their potential connection networks are rarely assessed quantitatively Using observations of SOC dynamics with detailed soil properties from 90 field trials at 28 sites under different agroecosystems across the Australian cropping regions, we investigated the direct and indirect effects of climate, soil properties, carbon (C) inputs and soil C pools (a total of 17 variables) on SOC change rate (rC, Mg C ha−1 yr−1) Among these variables, we found that the most influential variables on rC were the average C input amount and annual precipitation, and the total SOC stock at the beginning of the trials Overall, C inputs (including C input amount and pasture frequency in the crop rotation system) accounted for 27% of the relative influence on rC, followed by climate 25% (including precipitation and temperature), soil C pools 24% (including pool size and composition) and soil properties (such as cation exchange capacity, clay content, bulk density) 24% Path analysis identified a network of intercorrelations of climate, soil properties, C inputs and soil C pools in determining rC The direct correlation of rC with climate was significantly weakened if removing the effects of soil properties and C pools, and vice versa These results reveal the relative importance of climate, soil properties, C inputs and C pools and their complex interconnections in regulating SOC dynamics Ignorance of the impact of changes in soil properties, C pool composition and C input (quantity and quality) on SOC dynamics is likely one of the main sources of uncertainty in SOC predictions from the process-based SOC models

281 citations

Journal ArticleDOI
TL;DR: This work reconstructed the biogeography of the poison frog clade (Dendrobatidae) using a novel method of ancestral area reconstruction and relaxed Bayesian clock analyses, and rejected an Amazonian center-of-origin in favor of a complex connectivity model expanding over the Neotropics.
Abstract: The Neotropics contains half of remaining rainforests and Earth's largest reservoir of amphibian biodiversity. However, determinants of Neotropical biodiversity (i.e., vicariance, dispersals, extinctions, and radiations) earlier than the Quaternary are largely unstudied. Using a novel method of ancestral area reconstruction and relaxed Bayesian clock analyses, we reconstructed the biogeography of the poison frog clade (Dendrobatidae). We rejected an Amazonian center-of-origin in favor of a complex connectivity model expanding over the Neotropics. We inferred 14 dispersals into and 18 out of Amazonia to adjacent regions; the Andes were the major source of dispersals into Amazonia. We found three episodes of lineage dispersal with two interleaved periods of vicariant events between South and Central America. During the late Miocene, Amazonian, and Central American-Chocoan lineages significantly increased their diversity compared to the Andean and Guianan-Venezuelan-Brazilian Shield counterparts. Significant percentage of dendrobatid diversity in Amazonia and Choco resulted from repeated immigrations, with radiations at <10.0 million years ago (MYA), rather than in situ diversification. In contrast, the Andes, Venezuelan Highlands, and Guiana Shield have undergone extended in situ diversification at near constant rate since the Oligocene. The effects of Miocene paleogeographic events on Neotropical diversification dynamics provided the framework under which Quaternary patterns of endemism evolved.

281 citations

Journal ArticleDOI
TL;DR: Krainc et al. as mentioned in this paper showed that mutant HTT proteins in mice can bind and inactivate the deacetylase enzyme SIRT1 and that SIRT 1 overexpression is protective in Huntington's disease mouse models.
Abstract: Huntington's disease is a neurodegenerative disease caused by the accumulation of mutant HTT protein. Now, two groups led by Dimitri Krainc and Wenzhen Duan report that mutant HTT binds and inactivates the deacetylase enzyme SIRT1 and that SIRT1 overexpression is protective in Huntington's disease mouse models.

280 citations

Journal ArticleDOI
TL;DR: A greater understanding of the modulatory effects of phytochemicals on the rumen microbial populations together with fermentation will allow a better management of theRumen ecosystem and a practical application of this feed additive technology in livestock production.
Abstract: In the recent years, the exploration of bioactive phytochemicals as natural feed additives has been of great interest among nutritionists and rumen microbiologists to modify the rumen fermentation favorably such as defaunation, inhibition of methanogenesis, improvement in protein metabolism, and increasing conjugated linoleic acid content in ruminant derived foods. Many phytochemicals such as saponins, essential oils, tannins and flavonoids from a wide range of plants have been identified, which have potential values for rumen manipulation and enhancing animal productivity as alternatives to chemical feed additives. However, their effectiveness in ruminant production has not been proved to be consistent and conclusive. This review discusses the effects of phytochemicals such as saponins, tannins and essential oils on the rumen microbial populations, i.e., bacteria, protozoa, fungi and archaea with highlighting molecular diversity of microbial community in the rumen. There are contrasting reports of the effects of these phytoadditives on the rumen fermentation and rumen microbes probably depending upon the interactions among the chemical structures and levels of phytochemicals used, nutrient composition of diets and microbial components in the rumen. The study of chemical structure-activity relationships is required to exploit the phytochemicals for obtaining target responses without adversely affecting beneficial microbial populations. A greater understanding of the modulatory effects of phytochemicals on the rumen microbial populations together with fermentation will allow a better management of the rumen ecosystem and a practical application of this feed additive technology in livestock production.

280 citations


Authors

Showing all 25490 results

NameH-indexPapersCitations
Ronald C. Kessler2741332328983
Michael A. Strauss1851688208506
Derek R. Lovley16858295315
Ashok Kumar1515654164086
Peter J. Schwartz147647107695
Peter Buchholz143118192101
Robert Hirosky1391697106626
Elizabeth Barrett-Connor13879373241
Brad Abbott137156698604
Lihong V. Wang136111872482
Itsuo Nakano135153997905
Phillip Gutierrez133139196205
P. Skubic133157397343
Elizaveta Shabalina133142192273
Richard Brenner133110887426
Network Information
Related Institutions (5)
University of Texas at Austin
206.2K papers, 9M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

94% related

University of Washington
305.5K papers, 17.7M citations

93% related

University of Southern California
169.9K papers, 7.8M citations

92% related

University of Minnesota
257.9K papers, 11.9M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202392
2022348
20212,425
20202,481
20192,433
20182,396