scispace - formally typeset
Search or ask a question
Institution

University of Oklahoma

EducationNorman, Oklahoma, United States
About: University of Oklahoma is a education organization based out in Norman, Oklahoma, United States. It is known for research contribution in the topics: Population & Radar. The organization has 25269 authors who have published 52609 publications receiving 1821706 citations. The organization is also known as: OU & Oklahoma University.


Papers
More filters
Book
28 Feb 1986
TL;DR: In this paper, the authors introduce the concept of anisotropic elasticity and composite Laminate Theory for composite materials, and present a test standard for polymer matrix composites.
Abstract: Preface to the Second Edition. Preface to the First Edition. 1. Introduction to Composite Materials. 2. Anisotropic Elasticity and Composite Laminate Theory. 3. Plates and Panels of Composite Materials. 4. Beams, Columns and Rods of Composite Materials. 5. Composite Material Shells. 6. Energy Methods For Composite Material Structures. 7. Strength and Failure Theories. 8. Joining of Composite Material Structures. 9. Introduction to Composite Design. Appendices: A-1. Micromechanics. A-2. Test Standards for Polymer Matrix Composites. A-3. Properties of Various Polymer Composites. Author Index. Subject Index.

1,144 citations

Journal ArticleDOI
TL;DR: In this article, the authors emphasize the potential for improving green-roof function by understanding the interactions between its ecosystem elements, especially the relationships among growing media, soil biota, and vegetation.
Abstract: Green roofs (roofs with a vegetated surface and substrate) provide ecosystem services in urban areas, including improved storm-water management, better regulation of building temperatures, reduced urban heat-island effects, and increased urban wildlife habitat. This article reviews the evidence for these benefits and examines the biotic and abiotic components that contribute to overall ecosystem services. We emphasize the potential for improving green-roof function by understanding the interactions between its ecosystem elements, especially the relationships among growing media, soil biota, and vegetation, and the interactions between community structure and ecosystem functioning. Further research into green-roof technology should assess the efficacy of green roofs compared to other technologies with similar ends, and ultimately focus on estimates of aggregate benefits at landscape scales and on more holistic cost-benefit analyses.

1,137 citations

Journal ArticleDOI
TL;DR: The NextGen Model Atmosphere Grid for low mass stars for effective temperatures larger than 3.5°C was presented in this article, with the same basic model assumptions and input physics as the VLMS part of the NextGen grid so that the complete grid can be used.
Abstract: We present our NextGen Model Atmosphere grid for low mass stars for effective temperatures larger than $3000\K$. These LTE models are calculated with the same basic model assumptions and input physics as the VLMS part of the NextGen grid so that the complete grid can be used, e.g., for consistent stellar evolution calculations and for internally consistent analysis of cool star spectra. This grid is also the starting point for a large grid of detailed NLTE model atmospheres for dwarfs and giants (Hauschildt et al, in preparation). The models were calculated from $3000\K$ to $10000\K$ (in steps of $200\K$) for $3.5 \le \logg \le 5.5$ (in steps of 0.5) and metallicities of $-4.0 \le \mh \le 0.0$. We discuss the results of the model calculations and compare our results to the Kurucz 1994 grid. Some comparisons to standard stars like Vega and the Sun are presented and compared with detailed NLTE calculations.

1,129 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations

Journal ArticleDOI
08 Oct 2010-Science
TL;DR: It is reported that the dispersed hydrocarbon plume stimulated deep-sea indigenous γ-Proteobacteria that are closely related to known petroleum degraders, and the potential exists for intrinsic bioremediation of the oil plume in the deep-water column without substantial oxygen drawdown.
Abstract: The biological effects and expected fate of the vast amount of oil in the Gulf of Mexico from the Deepwater Horizon blowout are unknown owing to the depth and magnitude of this event. Here, we report that the dispersed hydrocarbon plume stimulated deep-sea indigenous γ-Proteobacteria that are closely related to known petroleum degraders. Hydrocarbon-degrading genes coincided with the concentration of various oil contaminants. Changes in hydrocarbon composition with distance from the source and incubation experiments with environmental isolates demonstrated faster-than-expected hydrocarbon biodegradation rates at 5°C. Based on these results, the potential exists for intrinsic bioremediation of the oil plume in the deep-water column without substantial oxygen drawdown.

1,125 citations


Authors

Showing all 25490 results

NameH-indexPapersCitations
Ronald C. Kessler2741332328983
Michael A. Strauss1851688208506
Derek R. Lovley16858295315
Ashok Kumar1515654164086
Peter J. Schwartz147647107695
Peter Buchholz143118192101
Robert Hirosky1391697106626
Elizabeth Barrett-Connor13879373241
Brad Abbott137156698604
Lihong V. Wang136111872482
Itsuo Nakano135153997905
Phillip Gutierrez133139196205
P. Skubic133157397343
Elizaveta Shabalina133142192273
Richard Brenner133110887426
Network Information
Related Institutions (5)
University of Texas at Austin
206.2K papers, 9M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

94% related

University of Washington
305.5K papers, 17.7M citations

93% related

University of Southern California
169.9K papers, 7.8M citations

92% related

University of Minnesota
257.9K papers, 11.9M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202392
2022348
20212,425
20202,481
20192,433
20182,396