scispace - formally typeset
Search or ask a question
Institution

University of Oklahoma

EducationNorman, Oklahoma, United States
About: University of Oklahoma is a education organization based out in Norman, Oklahoma, United States. It is known for research contribution in the topics: Population & Radar. The organization has 25269 authors who have published 52609 publications receiving 1821706 citations. The organization is also known as: OU & Oklahoma University.


Papers
More filters
Journal ArticleDOI
01 Jul 2003-Blood
TL;DR: Severe ADAMTS13 deficiency does not detect all patients who may be appropriately diagnosed with TTP-HUS and who may respond to plasma exchange treatment, and many patients in all ADAMts13 activity categories apparently responded to Plasma exchange treatment.

630 citations

Journal ArticleDOI
TL;DR: In this article, a global climatology of mean monthly surface air temperature has been compiled using terrestrial observations of shelter-height air temperature and shipboard measurements, and the combined data base consists of 17 986 independent terrestrial station records and 6 955 oceanic grid-point records.
Abstract: Using terrestrial observations of shelter-height air temperature and shipboard measurements, a global climatology of mean monthly surface air temperature has been compiled. Data were obtained from ten sources, screened for coding errors, and redundant station records were removed. The combined data base consists of 17 986 independent terrestrial station records and 6 955 oceanic grid-point records. These data were then interpolated to a 0.5° of latitude by 0.5° of longitude lattice using a spherically-based interpolation algorithm. Spatial distributions of the annual mean and intra-annual variance are presented along with a harmonic decomposition of the intra-annual variance.

626 citations

Journal ArticleDOI
TL;DR: Carbon-nitrogen interactions significantly influence the simulated response of carbon cycle to temperature and atmospheric CO2 concentration, suggesting that nutrients limitations should be included in the next generation of terrestrial biosphere models.
Abstract: The purpose of this study was to evaluate 10 process-based terrestrial biosphere models that were used for the IPCC fifth Assessment Report. The simulated gross primary productivity (GPP) is compared with flux-tower-based estimates by Jung et al. [Journal of Geophysical Research 116 (2011) G00J07] (JU11). The net primary productivity (NPP) apparent sensitivity to climate variability and atmospheric CO2 trends is diagnosed from each model output, using statistical functions. The temperature sensitivity is compared against ecosystem field warming experiments results. The CO2 sensitivity of NPP is compared to the results from four Free-Air CO2 Enrichment (FACE) experiments. The simulated global net biome productivity (NBP) is compared with the residual land sink (RLS) of the global carbon budget from Friedlingstein et al. [Nature Geoscience 3 (2010) 811] (FR10). We found that models produce a higher GPP (133 � 15 Pg C yr � 1 ) than JU11 (118 � 6P g Cy r � 1 ). In response to rising atmospheric CO2 concentration, modeled

619 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4, Baptiste Abeloos5, Rosemarie Aben6, Ossama AbouZeid7, N. L. Abraham8, Halina Abramowicz9, Henso Abreu10, Ricardo Abreu11, Yiming Abulaiti12, Bobby Samir Acharya13, Bobby Samir Acharya14, Leszek Adamczyk15, David H. Adams16, Jahred Adelman17, Stefanie Adomeit18, Tim Adye19, A. A. Affolder20, Tatjana Agatonovic-Jovin21, Johannes Agricola22, Juan Antonio Aguilar-Saavedra23, Steven Ahlen24, Faig Ahmadov25, Faig Ahmadov4, Giulio Aielli26, Henrik Akerstedt12, T. P. A. Åkesson27, Andrei Akimov, Gian Luigi Alberghi28, Justin Albert29, S. Albrand30, M. J. Alconada Verzini31, Martin Aleksa32, Igor Aleksandrov25, Calin Alexa, Gideon Alexander9, Theodoros Alexopoulos33, Muhammad Alhroob2, Malik Aliev34, Gianluca Alimonti, John Alison35, Steven Patrick Alkire36, Bmm Allbrooke8, Benjamin William Allen11, Phillip Allport37, Alberto Aloisio38, Alejandro Alonso39, Francisco Alonso31, Cristiano Alpigiani40, Mahmoud Alstaty1, B. Alvarez Gonzalez32, D. Álvarez Piqueras41, Mariagrazia Alviggi38, Brian Thomas Amadio42, K. Amako, Y. Amaral Coutinho43, Christoph Amelung44, D. Amidei45, S. P. Amor Dos Santos46, António Amorim47, Simone Amoroso32, Glenn Amundsen44, Christos Anastopoulos48, Lucian Stefan Ancu49, Nansi Andari17, Timothy Andeen50, Christoph Falk Anders51, G. Anders32, John Kenneth Anders20, Kelby Anderson35, Attilio Andreazza52, Andrei51, Stylianos Angelidakis53, Ivan Angelozzi6, Philipp Anger54, Aaron Angerami36, Francis Anghinolfi32, Alexey Anisenkov55, Nuno Anjos56 
Aix-Marseille University1, University of Oklahoma2, University of Iowa3, Azerbaijan National Academy of Sciences4, Université Paris-Saclay5, University of Amsterdam6, University of California, Santa Cruz7, University of Sussex8, Tel Aviv University9, Technion – Israel Institute of Technology10, University of Oregon11, Stockholm University12, International Centre for Theoretical Physics13, King's College London14, AGH University of Science and Technology15, Brookhaven National Laboratory16, Northern Illinois University17, Ludwig Maximilian University of Munich18, Rutherford Appleton Laboratory19, University of Liverpool20, University of Belgrade21, University of Göttingen22, University of Granada23, Boston University24, Joint Institute for Nuclear Research25, University of Rome Tor Vergata26, Lund University27, University of Bologna28, University of Victoria29, University of Grenoble30, National University of La Plata31, CERN32, National Technical University of Athens33, University of Salento34, University of Chicago35, Columbia University36, University of Birmingham37, University of Naples Federico II38, University of Copenhagen39, University of Washington40, University of Valencia41, Lawrence Berkeley National Laboratory42, Federal University of Rio de Janeiro43, Brandeis University44, University of Michigan45, University of Coimbra46, University of Lisbon47, University of Sheffield48, University of Geneva49, University of Texas at Austin50, Heidelberg University51, University of Milan52, National and Kapodistrian University of Athens53, Dresden University of Technology54, Novosibirsk State University55, IFAE56
TL;DR: In this article, a combined ATLAS and CMS measurements of the Higgs boson production and decay rates, as well as constraints on its couplings to vector bosons and fermions, are presented.
Abstract: Combined ATLAS and CMS measurements of the Higgs boson production and decay rates, as well as constraints on its couplings to vector bosons and fermions, are presented. The combination is based on the analysis of five production processes, namely gluon fusion, vector boson fusion, and associated production with a $W$ or a $Z$ boson or a pair of top quarks, and of the six decay modes $H \to ZZ, WW$, $\gamma\gamma, \tau\tau, bb$, and $\mu\mu$. All results are reported assuming a value of 125.09 GeV for the Higgs boson mass, the result of the combined measurement by the ATLAS and CMS experiments. The analysis uses the CERN LHC proton--proton collision data recorded by the ATLAS and CMS experiments in 2011 and 2012, corresponding to integrated luminosities per experiment of approximately 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and 20 fb$^{-1}$ at $\sqrt{s} = 8$ TeV. The Higgs boson production and decay rates measured by the two experiments are combined within the context of three generic parameterisations: two based on cross sections and branching fractions, and one on ratios of coupling modifiers. Several interpretations of the measurements with more model-dependent parameterisations are also given. The combined signal yield relative to the Standard Model prediction is measured to be 1.09 $\pm$ 0.11. The combined measurements lead to observed significances for the vector boson fusion production process and for the $H \to \tau\tau$ decay of $5.4$ and $5.5$ standard deviations, respectively. The data are consistent with the Standard Model predictions for all parameterisations considered.

618 citations

Journal ArticleDOI
TL;DR: The transcatheter pacemaker implanted in patients who had guideline-based indications for ventricular pacing met the prespecified safety and efficacy goals; it had a safety profile similar to that of a transvenous system while providing low and stable pacing thresholds.
Abstract: BackgroundA leadless intracardiac transcatheter pacing system has been designed to avoid the need for a pacemaker pocket and transvenous lead. MethodsIn a prospective multicenter study without controls, a transcatheter pacemaker was implanted in patients who had guideline-based indications for ventricular pacing. The analysis of the primary end points began when 300 patients reached 6 months of follow-up. The primary safety end point was freedom from system-related or procedure-related major complications. The primary efficacy end point was the percentage of patients with low and stable pacing capture thresholds at 6 months (≤2.0 V at a pulse width of 0.24 msec and an increase of ≤1.5 V from the time of implantation). The safety and efficacy end points were evaluated against performance goals (based on historical data) of 83% and 80%, respectively. We also performed a post hoc analysis in which the rates of major complications were compared with those in a control cohort of 2667 patients with transvenous ...

618 citations


Authors

Showing all 25490 results

NameH-indexPapersCitations
Ronald C. Kessler2741332328983
Michael A. Strauss1851688208506
Derek R. Lovley16858295315
Ashok Kumar1515654164086
Peter J. Schwartz147647107695
Peter Buchholz143118192101
Robert Hirosky1391697106626
Elizabeth Barrett-Connor13879373241
Brad Abbott137156698604
Lihong V. Wang136111872482
Itsuo Nakano135153997905
Phillip Gutierrez133139196205
P. Skubic133157397343
Elizaveta Shabalina133142192273
Richard Brenner133110887426
Network Information
Related Institutions (5)
University of Texas at Austin
206.2K papers, 9M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

94% related

University of Washington
305.5K papers, 17.7M citations

93% related

University of Southern California
169.9K papers, 7.8M citations

92% related

University of Minnesota
257.9K papers, 11.9M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202392
2022348
20212,425
20202,481
20192,433
20182,396