scispace - formally typeset
Search or ask a question

Showing papers by "University of Oregon published in 2015"


Journal ArticleDOI
28 Aug 2015-Science
TL;DR: A large-scale assessment suggests that experimental reproducibility in psychology leaves a lot to be desired, and correlational tests suggest that replication success was better predicted by the strength of original evidence than by characteristics of the original and replication teams.
Abstract: Reproducibility is a defining feature of science, but the extent to which it characterizes current research is unknown. We conducted replications of 100 experimental and correlational studies published in three psychology journals using high-powered designs and original materials when available. Replication effects were half the magnitude of original effects, representing a substantial decline. Ninety-seven percent of original studies had statistically significant results. Thirty-six percent of replications had statistically significant results; 47% of original effect sizes were in the 95% confidence interval of the replication effect size; 39% of effects were subjectively rated to have replicated the original result; and if no bias in original results is assumed, combining original and replication results left 68% with statistically significant effects. Correlational tests suggest that replication success was better predicted by the strength of original evidence than by characteristics of the original and replication teams.

5,532 citations


Journal ArticleDOI
TL;DR: Research over the past two decades broadly supports the claim that mindfulness meditation exerts beneficial effects on physical and mental health, and cognitive performance, but the underlying neural mechanisms remain unclear.
Abstract: Research over the past two decades broadly supports the claim that mindfulness meditation - practiced widely for the reduction of stress and promotion of health - exerts beneficial effects on physical and mental health, and cognitive performance. Recent neuroimaging studies have begun to uncover the brain areas and networks that mediate these positive effects. However, the underlying neural mechanisms remain unclear, and it is apparent that more methodologically rigorous studies are required if we are to gain a full understanding of the neuronal and molecular bases of the changes in the brain that accompany mindfulness meditation.

1,648 citations


Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4  +5117 moreInstitutions (314)
TL;DR: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4ℓ decay channels.
Abstract: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4l decay channels. The results are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experiments. The measured masses from the individual channels and the two experiments are found to be consistent among themselves. The combined measured mass of the Higgs boson is mH=125.09±0.21 (stat)±0.11 (syst) GeV.

1,567 citations


Journal ArticleDOI
TL;DR: It is hypothesized that Fe is the most-active site in the catalyst, while CoOOH primarily provides a conductive, high-surface area, chemically stabilizing host.
Abstract: Cobalt oxides and (oxy)hydroxides have been widely studied as electrocatalysts for the oxygen evolution reaction (OER). For related Ni-based materials, the addition of Fe dramatically enhances OER activity. The role of Fe in Co-based materials is not well-documented. We show that the intrinsic OER activity of Co1–xFex(OOH) is ∼100-fold higher for x ≈ 0.6–0.7 than for x = 0 on a per-metal turnover frequency basis. Fe-free CoOOH absorbs Fe from electrolyte impurities if the electrolyte is not rigorously purified. Fe incorporation and increased activity correlate with an anodic shift in the nominally Co2+/3+ redox wave, indicating strong electronic interactions between the two elements and likely substitutional doping of Fe for Co. In situ electrical measurements show that Co1–xFex(OOH) is conductive under OER conditions (∼0.7–4 mS cm–1 at ∼300 mV overpotential), but that FeOOH is an insulator with measurable conductivity (2.2 × 10–2 mS cm–1) only at high overpotentials >400 mV. The apparent OER activity of ...

1,449 citations


Journal ArticleDOI
J. Aasi1, J. Abadie1, B. P. Abbott1, Richard J. Abbott1  +884 moreInstitutions (98)
TL;DR: In this paper, the authors review the performance of the LIGO instruments during this epoch, the work done to characterize the detectors and their data, and the effect that transient and continuous noise artefacts have on the sensitivity of the detectors to a variety of astrophysical sources.
Abstract: In 2009–2010, the Laser Interferometer Gravitational-Wave Observatory (LIGO) operated together with international partners Virgo and GEO600 as a network to search for gravitational waves (GWs) of astrophysical origin. The sensitivity of these detectors was limited by a combination of noise sources inherent to the instrumental design and its environment, often localized in time or frequency, that couple into the GW readout. Here we review the performance of the LIGO instruments during this epoch, the work done to characterize the detectors and their data, and the effect that transient and continuous noise artefacts have on the sensitivity of LIGO to a variety of astrophysical sources.

1,266 citations


Journal ArticleDOI
TL;DR: In this article, the authors discuss recent advances in understanding the oxygen evolution reaction (OER) in alkaline media for earth-abundant, first-row, transition-metal oxides and (oxy)hydroxides.
Abstract: Poor oxygen evolution reaction (OER) catalysis limits the efficiency of H2 production from water electrolysis and photoelectrolysis routes to large-scale energy storage. Despite nearly a century of research, the factors governing the activity of OER catalysts are not well understood. In this Perspective, we discuss recent advances in understanding the OER in alkaline media for earth-abundant, first-row, transition-metal oxides and (oxy)hydroxides. We argue that the most-relevant structures for study are thermodynamically stable (oxy)hydroxides and not crystalline oxides. We discuss thin-film electrochemical microbalance techniques to accurately quantify intrinsic activity and in situ conductivity measurements to identify materials limited by electronic transport. We highlight the dramatic effect that Fe cations—added either intentionally or unintentionally from ubiquitous electrolyte impurities—have on the activity of common OER catalysts. We find new activity trends across the first-row transition metals...

886 citations


Journal ArticleDOI
TL;DR: In this paper, the authors suggest ways in which top managers can help themselves learn to avoid crisis through continuous unlearning, and suggest ways to help themselves to learn from crisis situations.
Abstract: Crises force organizations to replace top managers, so top managers should try to avoid crises through continuous unlearning. The authors suggest ways in which top managers can help themselves unlearn.

749 citations


Journal ArticleDOI
TL;DR: This work explores an array of prospective redesigns of plant systems at various scales aimed at increasing crop yields through improved photosynthetic efficiency and performance, and suggests some proposed redesigns are certain to face obstacles that will require alternate routes.
Abstract: The world’s crop productivity is stagnating whereas population growth, rising affluence, and mandates for biofuels put increasing demands on agriculture. Meanwhile, demand for increasing cropland competes with equally crucial global sustainability and environmental protection needs. Addressing this looming agricultural crisis will be one of our greatest scientific challenges in the coming decades, and success will require substantial improvements at many levels. We assert that increasing the efficiency and productivity of photosynthesis in crop plants will be essential if this grand challenge is to be met. Here, we explore an array of prospective redesigns of plant systems at various scales, all aimed at increasing crop yields through improved photosynthetic efficiency and performance. Prospects range from straightforward alterations, already supported by preliminary evidence of feasibility, to substantial redesigns that are currently only conceptual, but that may be enabled by new developments in synthetic biology. Although some proposed redesigns are certain to face obstacles that will require alternate routes, the efforts should lead to new discoveries and technical advances with important impacts on the global problem of crop productivity and bioenergy production.

700 citations


Journal ArticleDOI
TL;DR: Most of the time, organizations generate actions unreflectively and nonadaptively as discussed by the authors, creating problems, successes, threats, and opportunities to justify their actions, creating ideological molecules that mix values, goals, expectations, perceptions, theories, plans, and symbols.
Abstract: Most of the time, organizations generate actions unreflectively and nonadaptively. To justify their actions, organizations create problems, successes, threats and opportunities. These are ideological molecules that mix values, goals, expectations, perceptions, theories, plans, and symbols. The molecules form while people are result watching, guided by the beliefs that they should judge results good or bad, look for the causes of results, and propose needs for action. Because Organizations modify their behavior programs mainly in small increments that make sense to top managers, they change too little and inappropriately, and nearly all organizations disappear within a few years.

555 citations


Journal ArticleDOI
TL;DR: Using e-cigarettes at baseline was associated with progression to traditional cigarette smoking, and these findings support regulations to limit sales and decrease the appeal of e-cigarette to adolescents and young adults.
Abstract: Importance Electronic cigarettes (e-cigarettes) may help smokers reduce the use of traditional combustible cigarettes. However, adolescents and young adults who have never smoked traditional cigarettes are now using e-cigarettes, and these individuals may be at risk for subsequent progression to traditional cigarette smoking. Objective To determine whether baseline use of e-cigarettes among nonsmoking and nonsusceptible adolescents and young adults is associated with subsequent progression along an established trajectory to traditional cigarette smoking. Design, setting, and participants In this longitudinal cohort study, a national US sample of 694 participants aged 16 to 26 years who were never cigarette smokers and were attitudinally nonsusceptible to smoking cigarettes completed baseline surveys from October 1, 2012, to May 1, 2014, regarding smoking in 2012-2013. They were reassessed 1 year later. Analysis was conducted from July 1, 2014, to March 1, 2015. Multinomial logistic regression was used to assess the independent association between baseline e-cigarette use and cigarette smoking, controlling for sex, age, race/ethnicity, maternal educational level, sensation-seeking tendency, parental cigarette smoking, and cigarette smoking among friends. Sensitivity analyses were performed, with varying approaches to missing data and recanting. Exposures Use of e-cigarettes at baseline. Main outcomes and measures Progression to cigarette smoking, defined using 3 specific states along a trajectory: nonsusceptible nonsmokers, susceptible nonsmokers, and smokers. Individuals who could not rule out smoking in the future were defined as susceptible. Results Among the 694 respondents, 374 (53.9%) were female and 531 (76.5%) were non-Hispanic white. At baseline, 16 participants (2.3%) used e-cigarettes. Over the 1-year follow-up, 11 of 16 e-cigarette users and 128 of 678 of those who had not used e-cigarettes (18.9%) progressed toward cigarette smoking. In the primary fully adjusted models, baseline e-cigarette use was independently associated with progression to smoking (adjusted odds ratio [AOR], 8.3; 95% CI, 1.2-58.6) and to susceptibility among nonsmokers (AOR, 8.5; 95% CI, 1.3-57.2). Sensitivity analyses showed consistent results in the level of significance and slightly larger magnitude of AORs. Conclusions and relevance In this national sample of US adolescents and young adults, use of e-cigarettes at baseline was associated with progression to traditional cigarette smoking. These findings support regulations to limit sales and decrease the appeal of e-cigarettes to adolescents and young adults.

445 citations


Journal ArticleDOI
TL;DR: It is found that results indicating higher activation in 2010 were associated with nine out of thirteen better health outcomes-including better clinical indicators, more healthy behaviors, and greater use of women's preventive screening tests-as well as with lower costs two years later.
Abstract: Patient engagement has become a major focus of health reform. However, there is limited evidence showing that increases in patient engagement are associated with improved health outcomes or lower costs. We examined the extent to which a single assessment of engagement, the Patient Activation Measure, was associated with health outcomes and costs over time, and whether changes in assessed activation were related to expected changes in outcomes and costs. We used data on adult primary care patients from a single large health care system where the Patient Activation Measure is routinely used. We found that results indicating higher activation in 2010 were associated with nine out of thirteen better health outcomes—including better clinical indicators, more healthy behaviors, and greater use of women’s preventive screening tests—as well as with lower costs two years later. Changes in activation level were associated with changes in over half of the health outcomes examined, as well as costs, in the expected d...

Journal ArticleDOI
22 Oct 2015-Cell
TL;DR: It is shown that the coordination of neuronal activity patterns into global brain dynamics underlies the high-level organization of behavior and serves as a robust scaffold for action selection in response to sensory input.

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, S. Abdel Khalek4  +2815 moreInstitutions (169)
TL;DR: In this article, a search for new phenomena in final states with an energetic jet and large missing transverse momentum was performed using 20.3 fb(-1) of root s = 8 TeV data collected in 2012.
Abstract: Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb(-1) of root s = 8 TeV data collected in 2012 ...

Journal ArticleDOI
TL;DR: A new OER activity trend for nominally oxyhydroxide thin films of Ni( Fe)O(x)H(y) > Co(Fe)O-AuO-H(Y) > FeO (x) H(y)-Au O(x), described to provide a basis for comparison to theory and help guide the design of improved catalyst systems.
Abstract: First-row transition-metal oxides and (oxy)hydroxides catalyze the oxygen evolution reaction (OER) in alkaline media. Understanding the intrinsic catalytic activity provides insight into improved catalyst design. Experimental and computationally predicted activity trends, however, have varied substantially. Here we describe a new OER activity trend for nominally oxyhydroxide thin films of Ni(Fe)OxHy > Co(Fe)OxHy > FeOxHy-AuOx > FeOxHy > CoOxHy > NiOxHy > MnOxHy. This intrinsic trend has been previously obscured by electrolyte impurities, potential-dependent electrical conductivity, and difficulty in correcting for surface-area or mass-loading differences. A quartz-crystal microbalance was used to monitor mass in situ and X-ray photoelectron spectroscopy to measure composition and impurity levels. These new results provide a basis for comparison to theory and help guide the design of improved catalyst systems.

Journal ArticleDOI
TL;DR: It is demonstrated that individuals could be uniquely identified among populations of 100s based on their microbiomes alone, and the feasibility of microbiome-based identifiability is demonstrated with important ethical implications for microbiome study design.
Abstract: Community composition within the human microbiome varies across individuals, but it remains unknown if this variation is sufficient to uniquely identify individuals within large populations or stable enough to identify them over time. We investigated this by developing a hitting set-based coding algorithm and applying it to the Human Microbiome Project population. Our approach defined body site-specific metagenomic codes: sets of microbial taxa or genes prioritized to uniquely and stably identify individuals. Codes capturing strain variation in clade-specific marker genes were able to distinguish among 100s of individuals at an initial sampling time point. In comparisons with follow-up samples collected 30–300 d later, ∼30% of individuals could still be uniquely pinpointed using metagenomic codes from a typical body site; coincidental (false positive) matches were rare. Codes based on the gut microbiome were exceptionally stable and pinpointed >80% of individuals. The failure of a code to match its owner at a later time point was largely explained by the loss of specific microbial strains (at current limits of detection) and was only weakly associated with the length of the sampling interval. In addition to highlighting patterns of temporal variation in the ecology of the human microbiome, this work demonstrates the feasibility of microbiome-based identifiability—a result with important ethical implications for microbiome study design. The datasets and code used in this work are available for download from huttenhower.sph.harvard.edu/idability.

Journal ArticleDOI
TL;DR: In this article, a systematic investigation of Fe (oxy)hydroxide OER catalysis in alkaline media is presented, showing that at low overpotentials of ∼350 mV, the catalyst dissolution rate is low, the activity is dramatically enhanced by an AuOx/Au substrate, and the geometric OER current density is largely independent of mass loading.
Abstract: Fe cations dramatically enhance oxygen evolution reaction (OER) activity when incorporated substitutionally into Ni or Co (oxy)hydroxides, serving as possible OER active sites. Pure Fe (oxy)hydroxides, however, are typically thought to be poor OER catalysts and are not well-understood. Here, we report a systematic investigation of Fe (oxy)hydroxide OER catalysis in alkaline media. At low overpotentials of ∼350 mV, the catalyst dissolution rate is low, the activity is dramatically enhanced by an AuOx/Au substrate, and the geometric OER current density is largely independent of mass loading. At higher overpotentials of ∼450 mV, the dissolution rate is high, the activity is largely independent of substrate choice, and the geometric current density depends linearly on loading. These observations, along with previously reported in situ conductivity measurements, suggest a new model for OER catalysis on Fe (oxy)hydroxide. At low overpotentials, only the first monolayer of the electrolyte-permeable Fe (oxy)hydro...


Journal ArticleDOI
TL;DR: By exploiting the interaction between light and phonons in a silica microsphere resonator, it is possible to generate Brillouin scattering induced transparency, which is akin to electromagnetically induced transparency but for acoustic waves.
Abstract: By exploiting the interaction between light and phonons in a silica microsphere resonator it is possible to generate Brillouin scattering induced transparency, which is akin to electromagnetically induced transparency but for acoustic waves.

Journal ArticleDOI
Jalal Abdallah1, Henrique Araujo2, Alexandre Arbey3, Alexandre Arbey4, Alexandre Arbey5, Adi Ashkenazi6, Alexander Belyaev7, Joshua Berger8, Celine Boehm9, Antonio Boveia4, Amelia Jean Brennan10, James John Brooke, Oliver Buchmueller2, Matthew R. Buckley11, Giorgio Busoni12, Lorenzo Calibbi13, Lorenzo Calibbi14, Sushil Chauhan15, Nadir Daci16, Gavin Davies2, Isabelle De Bruyn16, Paul De Jong, Albert De Roeck4, Kees de Vries2, D. Del Re, Andrea De Simone12, Andrea Di Simone17, Caterina Doglioni18, Matthew J. Dolan8, Herbi K. Dreiner19, John Ellis20, John Ellis4, Sarah Catherine Eno21, Erez Etzion6, Malcolm Fairbairn20, Brian Feldstein22, Henning Flaecher, Eric Feng23, Patrick J. Fox24, Marie-Helene Genest25, Loukas Gouskos26, Johanna Gramling18, Ulrich Haisch4, Ulrich Haisch22, Roni Harnik24, Anthony Hibbs22, Siewyan Hoh27, W. Hopkins28, Valerio Ippolito29, Thomas Jacques18, Felix Kahlhoefer, Valentin V. Khoze9, Russell Kirk30, Andreas Korn31, Khristian Kotov32, Shuichi Kunori33, Greg Landsberg34, Sebastian Liem35, Tongyan Lin36, Steven Lowette16, Robyn Lucas37, Robyn Lucas2, Luca Malgeri4, Sarah Malik2, Christopher McCabe9, Christopher McCabe35, Alaettin Serhan Mete38, Enrico Morgante18, Stephen Mrenna24, Yu Nakahama39, Yu Nakahama4, Dave M Newbold, Karl Nordström40, Priscilla Pani, Michele Papucci41, Michele Papucci42, Sophio Pataraia, Bjoern Penning36, Deborah Pinna43, Giacomo Polesello, Davide Racco18, Emanuele Re22, Antonio Riotto18, Thomas G. Rizzo8, David Salek35, Subir Sarkar22, S. Schramm44, P. Skubic45, Oren Slone6, Juri Smirnov46, Yotam Soreq47, T. J. Sumner2, Tim M. P. Tait38, Marc Thomas7, Marc Thomas37, Ian R Tomalin37, C. Tunnell, Alessandro Vichi4, Tomer Volansky6, Neal Weiner48, Stephen M. West30, Monika Wielers37, Steven Worm37, Itay Yavin49, Itay Yavin50, Bryan Zaldivar14, Ning Zhou38, Kathryn M. Zurek42, Kathryn M. Zurek41 
TL;DR: In this paper, a set of simplified models for dark matter and its interactions with the Standard Model particles are presented, and the guiding principles underpinning these simplified models are spelled out, and some suggestions for implementation are presented.


Journal ArticleDOI
Jalal Abdallah1, Henrique Araujo2, Alexandre Arbey3, Alexandre Arbey4, Alexandre Arbey5, Adi Ashkenazi6, Alexander Belyaev7, Joshua Berger8, Celine Boehm9, Antonio Boveia5, Amelia Jean Brennan10, James John Brooke, Oliver Buchmueller2, Matthew R. Buckley11, Giorgio Busoni12, Lorenzo Calibbi13, Lorenzo Calibbi14, Sushil Chauhan15, Nadir Daci16, Gavin Davies2, Isabelle De Bruyn16, Paul De Jong, Albert De Roeck5, Kees de Vries2, D. Del Re, Andrea De Simone12, Andrea Di Simone17, Caterina Doglioni18, Matthew J. Dolan8, Herbi K. Dreiner19, John Ellis20, John Ellis5, Sarah Catherine Eno21, Erez Etzion6, Malcolm Fairbairn20, Brian Feldstein22, Henning Flaecher, Eric Feng23, Patrick J. Fox24, Marie-Helene Genest25, Loukas Gouskos26, Johanna Gramling18, Ulrich Haisch5, Ulrich Haisch22, Roni Harnik24, Anthony Hibbs22, Siewyan Hoh27, W. Hopkins28, Valerio Ippolito29, Thomas Jacques18, Felix Kahlhoefer, Valentin V. Khoze9, Russell Kirk30, Andreas Korn31, Khristian Kotov32, Shuichi Kunori33, Greg Landsberg34, Sebastian Liem35, Tongyan Lin36, Steven Lowette16, Robyn Lucas37, Robyn Lucas2, Luca Malgeri5, Sarah Malik2, Christopher McCabe35, Christopher McCabe9, Alaettin Serhan Mete38, Enrico Morgante18, Stephen Mrenna24, Yu Nakahama39, Yu Nakahama5, Dave M Newbold, Karl Nordström40, Priscilla Pani, Michele Papucci41, Michele Papucci42, Sophio Pataraia, Bjoern Penning36, Deborah Pinna43, Giacomo Polesello, Davide Racco18, Emanuele Re22, Antonio Riotto18, Thomas G. Rizzo8, David Salek35, Subir Sarkar22, S. Schramm44, P. Skubic45, Oren Slone6, Juri Smirnov46, Yotam Soreq47, T. J. Sumner2, Tim M. P. Tait38, Marc Thomas7, Marc Thomas37, Ian R Tomalin37, C. Tunnell, Alessandro Vichi5, Tomer Volansky6, Neal Weiner48, Stephen M. West30, Monika Wielers37, Steven Worm37, Itay Yavin49, Itay Yavin50, Bryan Zaldivar14, Ning Zhou38, Kathryn M. Zurek42, Kathryn M. Zurek41 
TL;DR: In this article, a set of simplified models for dark matter and its interactions with the Standard Model particles are presented, and the guiding principles underpinning these simplified models are spelled out, and some suggestions for implementation are presented.
Abstract: This document outlines a set of simplified models for dark matter and its interactions with Standard Model particles. It is intended to summarize the main characteristics that these simplified models have when applied to dark matter searches at the LHC, and to provide a number of useful expressions for reference. The list of models includes both s-channel and t-channel scenarios. For s-channel, spin-0 and spin-1 mediation is discussed, and also realizations where the Higgs particle provides a portal between the dark and visible sectors. The guiding principles underpinning the proposed simplified models are spelled out, and some suggestions for implementation are presented.

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, J. Abdallah4  +2914 moreInstitutions (169)
TL;DR: In this article, the jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton-proton collision data with a centre-of-mass energy of [Formula: see text]TeV corresponding to an integrated luminosity of [formula] see text][formula:see text].
Abstract: The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton-proton collision data with a centre-of-mass energy of [Formula: see text] TeV corresponding to an integrated luminosity of [Formula: see text][Formula: see text]. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells using the anti-[Formula: see text] algorithm with distance parameters [Formula: see text] or [Formula: see text], and are calibrated using MC simulations. A residual JES correction is applied to account for differences between data and MC simulations. This correction and its systematic uncertainty are estimated using a combination of in situ techniques exploiting the transverse momentum balance between a jet and a reference object such as a photon or a [Formula: see text] boson, for [Formula: see text] and pseudorapidities [Formula: see text]. The effect of multiple proton-proton interactions is corrected for, and an uncertainty is evaluated using in situ techniques. The smallest JES uncertainty of less than 1 % is found in the central calorimeter region ([Formula: see text]) for jets with [Formula: see text]. For central jets at lower [Formula: see text], the uncertainty is about 3 %. A consistent JES estimate is found using measurements of the calorimeter response of single hadrons in proton-proton collisions and test-beam data, which also provide the estimate for [Formula: see text] TeV. The calibration of forward jets is derived from dijet [Formula: see text] balance measurements. The resulting uncertainty reaches its largest value of 6 % for low-[Formula: see text] jets at [Formula: see text]. Additional JES uncertainties due to specific event topologies, such as close-by jets or selections of event samples with an enhanced content of jets originating from light quarks or gluons, are also discussed. The magnitude of these uncertainties depends on the event sample used in a given physics analysis, but typically amounts to 0.5-3 %.

Journal ArticleDOI
TL;DR: Imagine if the authors could compute across phenotype data as easily as genomic data; this article calls for efforts to realize this vision and discusses the potential benefits.
Abstract: Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility.

Journal ArticleDOI
TL;DR: Characteristics of several redox electrolytes are reported to illustrate operational/self-discharge mechanisms and the design rules for high performance in electrochemical double-layer capacitors.
Abstract: Electrochemical double-layer capacitors exhibit high power and long cycle life but have low specific energy compared with batteries, limiting applications. Redox-enhanced capacitors increase specific energy by using redox-active electrolytes that are oxidized at the positive electrode and reduced at the negative electrode during charging. Here we report characteristics of several redox electrolytes to illustrate operational/self-discharge mechanisms and the design rules for high performance. We discover a methyl viologen (MV)/bromide electrolyte that delivers a high specific energy of ∼14 Wh kg(-1) based on the mass of electrodes and electrolyte, without the use of an ion-selective membrane separator. Substituting heptyl viologen for MV increases stability, with no degradation over 20,000 cycles. Self-discharge is low, due to adsorption of the redox couples in the charged state to the activated carbon, and comparable to cells with inert electrolyte. An electrochemical model reproduces experiments and predicts that 30-50 Wh kg(-1) is possible with optimization.

Journal ArticleDOI
TL;DR: Results are provided on how to apply CV to consistently choose the best method, yielding new insights and guidance for potentially vast amount of application.

Journal ArticleDOI
TL;DR: This review highlights the unique physical phenomena surrounding this class of polycyclic aromatic hydrocarbons, specifically emphasizing the novel structural, optical, and electronic properties of [5]-[12]CPPs.
Abstract: [n]Cycloparaphenylenes (or “carbon nanohoops”) are cyclic fragments of carbon nanotubes that consist of n para linked benzene rings. These strained, all sp2 hybridized macrocycles, have size-dependent optical and electronic properties that are the most dynamic at the smallest size regime where n = 5–12. This review highlights the unique physical phenomena surrounding this class of polycyclic aromatic hydrocarbons, specifically emphasizing the novel structural, optical, and electronic properties of [5]–[12]CPPs.

Journal ArticleDOI
TL;DR: The role of emotion regulation in parenthood is examined, and it is proposed that regulatory function during this period is distinct from the emotion regulation skills acquired and implemented during other periods of life.

Journal ArticleDOI
TL;DR: The prevalence of 1+ ADL limitation, poor self-rated health, and depression increased whereas quality of life declined markedly with an increase in number of diseases, highlighting the challenge of multimorbidity in LMICs, particularly among the lower socioeconomic groups.
Abstract: Chronic diseases contribute a large share of disease burden in low- and middle-income countries (LMICs). Chronic diseases have a tendency to occur simultaneously and where there are two or more such conditions, this is termed as ‘multimorbidity’. Multimorbidity is associated with adverse health outcomes, but limited research has been undertaken in LMICs. Therefore, this study examines the prevalence and correlates of multimorbidity as well as the associations between multimorbidity and self-rated health, activities of daily living (ADLs), quality of life, and depression across six LMICs. Data was obtained from the WHO’s Study on global AGEing and adult health (SAGE) Wave-1 (2007/10). This was a cross-sectional population based survey performed in LMICs, namely China, Ghana, India, Mexico, Russia, and South Africa, including 42,236 adults aged 18 years and older. Multimorbidity was measured as the simultaneous presence of two or more of eight chronic conditions including angina pectoris, arthritis, asthma, chronic lung disease, diabetes mellitus, hypertension, stroke, and vision impairment. Associations with four health outcomes were examined, namely ADL limitation, self-rated health, depression, and a quality of life index. Random-intercept multilevel regression models were used on pooled data from the six countries. The prevalence of morbidity and multimorbidity was 54.2 % and 21.9 %, respectively, in the pooled sample of six countries. Russia had the highest prevalence of multimorbidity (34.7 %) whereas China had the lowest (20.3 %). The likelihood of multimorbidity was higher in older age groups and was lower in those with higher socioeconomic status. In the pooled sample, the prevalence of 1+ ADL limitation was 14 %, depression 5.7 %, self-rated poor health 11.6 %, and mean quality of life score was 54.4. Substantial cross-country variations were seen in the four health outcome measures. The prevalence of 1+ ADL limitation, poor self-rated health, and depression increased whereas quality of life declined markedly with an increase in number of diseases. Findings highlight the challenge of multimorbidity in LMICs, particularly among the lower socioeconomic groups, and the pressing need for reorientation of health care resources considering the distribution of multimorbidity and its adverse effect on health outcomes.

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4  +2827 moreInstitutions (148)
TL;DR: The Standard Model (SM) Higgs boson hypothesis is tested against several alternative spin scenarios, including non-SM spin-0 and spin-2 models with universal and non-universal couplings to fermions and vector bosons, and the observed distributions of variables sensitive to the non- SM tensor couplings are compatible with the SM predictions.
Abstract: Studies of the spin, parity and tensor couplings of the Higgs boson in the [Formula: see text], [Formula: see text] and [Formula: see text] decay processes at the LHC are presented. The investigations are based on [Formula: see text] of pp collision data collected by the ATLAS experiment at [Formula: see text] TeV and [Formula: see text] TeV. The Standard Model (SM) Higgs boson hypothesis, corresponding to the quantum numbers [Formula: see text], is tested against several alternative spin scenarios, including non-SM spin-0 and spin-2 models with universal and non-universal couplings to fermions and vector bosons. All tested alternative models are excluded in favour of the SM Higgs boson hypothesis at more than 99.9 % confidence level. Using the [Formula: see text] and [Formula: see text] decays, the tensor structure of the interaction between the spin-0 boson and the SM vector bosons is also investigated. The observed distributions of variables sensitive to the non-SM tensor couplings are compatible with the SM predictions and constraints on the non-SM couplings are derived.

Journal ArticleDOI
TL;DR: The most accurate source localization is obtained when the voltage surface is densely sampled over both the superior and inferior surfaces, as well as across all sampling density and inverse methods.