scispace - formally typeset
Search or ask a question
Institution

University of Paris

EducationParis, France
About: University of Paris is a education organization based out in Paris, France. It is known for research contribution in the topics: Population & Transplantation. The organization has 102426 authors who have published 174180 publications receiving 5041753 citations. The organization is also known as: Sorbonne.


Papers
More filters
Journal ArticleDOI
TL;DR: The main advantages of the current revised classification is that it provides a clear and unequivocal description of the various lesions and classes of lupus nephritis, allowing a better standardization and lending a basis for further clinicopathologic studies.
Abstract: The currently used classification reflects our understanding of the pathogenesis of the various forms of lupus nephritis, but clinicopathologic studies have revealed the need for improved categorization and terminology. Based on the 1982 classification published under the auspices of the World Health Organization (WHO) and subsequent clinicopathologic data, we propose that class I and II be used for purely mesangial involvement (I, mesangial immune deposits without mesangial hypercellularity; II, mesangial immune deposits with mesangial hypercellularity); class III for focal glomerulonephritis (involving or = 50% of total number of glomeruli) either with segmental (class IV-S) or global (class IV-G) involvement, and also with subdivisions for active and sclerotic lesions; class V for membranous lupus nephritis; and class VI for advanced sclerosing lesions]. Combinations of membranous and proliferative glomerulonephritis (i.e., class III and V or class IV and V) should be reported individually in the diagnostic line. The diagnosis should also include entries for any concomitant vascular or tubulointerstitial lesions. One of the main advantages of the current revised classification is that it provides a clear and unequivocal description of the various lesions and classes of lupus nephritis, allowing a better standardization and lending a basis for further clinicopathologic studies. We hope that this revision, which evolved under the auspices of the International Society of Nephrology and the Renal Pathology Society, will contribute to further advancement of the WHO classification.

2,004 citations

Journal ArticleDOI
TL;DR: This elaboration and explanation document is developed from a review of the literature to provide examples of adequate reporting in trials of nonpharmacologic treatments and should help to improve the reporting of RCTs performed in this field.
Abstract: Adequate reporting of randomized, controlled trials (RCTs) is necessary to allow accurate critical appraisal of the validity and applicability of the results. The CONSORT (Consolidated Standards of Reporting Trials) Statement, a 22-item checklist and flow diagram, is intended to address this problem by improving the reporting of RCTs. However, some specific issues that apply to trials of nonpharmacologic treatments (for example, surgery, technical interventions, devices, rehabilitation, psychotherapy, and behavioral intervention) are not specifically addressed in the CONSORT Statement. Furthermore, considerable evidence suggests that the reporting of nonpharmacologic trials still needs improvement. Therefore, the CONSORT group developed an extension of the CONSORT Statement for trials assessing nonpharmacologic treatments. A consensus meeting of 33 experts was organized in Paris, France, in February 2006, to develop an extension of the CONSORT Statement for trials of nonpharmacologic treatments. The participants extended 11 items from the CONSORT Statement, added 1 item, and developed a modified flow diagram. To allow adequate understanding and implementation of the CONSORT extension, the CONSORT group developed this elaboration and explanation document from a review of the literature to provide examples of adequate reporting. This extension, in conjunction with the main CONSORT Statement and other CONSORT extensions, should help to improve the reporting of RCTs performed in this field.

1,993 citations

Journal ArticleDOI
TL;DR: A new model for active contours based on a geometric partial differential equation that satisfies the maximum principle and permits a rigorous mathematical analysis is proposed, which enables us to extract smooth shapes and it can be adapted to find several contours simultaneously.
Abstract: We propose a new model for active contours based on a geometric partial differential equation. Our model is intrinsec, stable (satisfies the maximum principle) and permits a rigorous mathematical analysis. It enables us to extract smooth shapes (we cannot retrieve angles) and it can be adapted to find several contours simultaneously. Moreover, as a consequence of the stability, we can design robust algorithms which can be engineed with no parameters in applications. Numerical experiments are presented.

1,948 citations

Book ChapterDOI
01 Jan 2011
TL;DR: The basic properties of proximity operators which are relevant to signal processing and optimization methods based on these operators are reviewed and proximal splitting methods are shown to capture and extend several well-known algorithms in a unifying framework.
Abstract: The proximity operator of a convex function is a natural extension of the notion of a projection operator onto a convex set. This tool, which plays a central role in the analysis and the numerical solution of convex optimization problems, has recently been introduced in the arena of inverse problems and, especially, in signal processing, where it has become increasingly important. In this paper, we review the basic properties of proximity operators which are relevant to signal processing and present optimization methods based on these operators. These proximal splitting methods are shown to capture and extend several well-known algorithms in a unifying framework. Applications of proximal methods in signal recovery and synthesis are discussed.

1,942 citations


Authors

Showing all 102613 results

NameH-indexPapersCitations
Guido Kroemer2361404246571
David H. Weinberg183700171424
Paul M. Thompson1832271146736
Chris Sander178713233287
Sophie Henrot-Versille171957157040
Richard H. Friend1691182140032
George P. Chrousos1691612120752
Mika Kivimäki1661515141468
Martin Karplus163831138492
William J. Sandborn1621317108564
Darien Wood1602174136596
Monique M.B. Breteler15954693762
Paul Emery1581314121293
Wolfgang Wagner1562342123391
Joao Seixas1531538115070
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

95% related

École Normale Supérieure
99.4K papers, 3M citations

94% related

Imperial College London
209.1K papers, 9.3M citations

93% related

Sapienza University of Rome
155.4K papers, 4.3M citations

93% related

University of Groningen
69.1K papers, 2.9M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202376
2022602
202116,433
202015,008
201911,047
20189,090