scispace - formally typeset
Search or ask a question
Institution

University of Paris

EducationParis, France
About: University of Paris is a education organization based out in Paris, France. It is known for research contribution in the topics: Population & Medicine. The organization has 102426 authors who have published 174180 publications receiving 5041753 citations. The organization is also known as: Sorbonne.


Papers
More filters
Journal ArticleDOI
TL;DR: The adaptive noise smoothing filter is a systematic derivation of Lee's algorithm with some extensions that allow different estimators for the local image variance and its easy extension to deal with various types of signal-dependent noise.
Abstract: In this paper, we consider the restoration of images with signal-dependent noise. The filter is noise smoothing and adapts to local changes in image statistics based on a nonstationary mean, nonstationary variance (NMNV) image model. For images degraded by a class of uncorrelated, signal-dependent noise without blur, the adaptive noise smoothing filter becomes a point processor and is similar to Lee's local statistics algorithm [16]. The filter is able to adapt itself to the nonstationary local image statistics in the presence of different types of signal-dependent noise. For multiplicative noise, the adaptive noise smoothing filter is a systematic derivation of Lee's algorithm with some extensions that allow different estimators for the local image variance. The advantage of the derivation is its easy extension to deal with various types of signal-dependent noise. Film-grain and Poisson signal-dependent restoration problems are also considered as examples. All the nonstationary image statistical parameters needed for the filter can be estimated from the noisy image and no a priori information about the original image is required.

1,475 citations

Journal ArticleDOI
TL;DR: This consensus document advises on the measurement procedures in general and provides arguments for the use of 80% of the direct carotid-femoral distance as the most accurate distance estimate.
Abstract: Stiffness of elastic arteries like the aorta predicts cardiovascular risk. By directly reflecting arterial stiffness, having the best predictive value for cardiovascular outcome and the ease of its measurement, carotid-femoral pulse wave velocity is now considered the gold standard for arterial stiffness assessment in daily practice. Many different measurement procedures have been proposed. Therefore, standardization of its measurement is urgently needed, particularly regarding the distance measurement. This consensus document advises on the measurement procedures in general and provides arguments for the use of 80% of the direct carotid-femoral distance as the most accurate distance estimate. It also advises the use of 10 m/s as new cut-off value for carotid-femoral pulse wave velocity.

1,471 citations

Journal ArticleDOI
08 Jul 2021-Nature
TL;DR: In this paper, an infectious strain of the SARS-CoV-2 Delta variant was isolated from an individual with COVID-19 who had returned to France from India.
Abstract: The SARS-CoV-2 B.1.617 lineage was identified in October 2020 in India1–5. Since then, it has become dominant in some regions of India and in the UK, and has spread to many other countries6. The lineage includes three main subtypes (B1.617.1, B.1.617.2 and B.1.617.3), which contain diverse mutations in the N-terminal domain (NTD) and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein that may increase the immune evasion potential of these variants. B.1.617.2—also termed the Delta variant—is believed to spread faster than other variants. Here we isolated an infectious strain of the Delta variant from an individual with COVID-19 who had returned to France from India. We examined the sensitivity of this strain to monoclonal antibodies and to antibodies present in sera from individuals who had recovered from COVID-19 (hereafter referred to as convalescent individuals) or who had received a COVID-19 vaccine, and then compared this strain with other strains of SARS-CoV-2. The Delta variant was resistant to neutralization by some anti-NTD and anti-RBD monoclonal antibodies, including bamlanivimab, and these antibodies showed impaired binding to the spike protein. Sera collected from convalescent individuals up to 12 months after the onset of symptoms were fourfold less potent against the Delta variant relative to the Alpha variant (B.1.1.7). Sera from individuals who had received one dose of the Pfizer or the AstraZeneca vaccine had a barely discernible inhibitory effect on the Delta variant. Administration of two doses of the vaccine generated a neutralizing response in 95% of individuals, with titres three- to fivefold lower against the Delta variant than against the Alpha variant. Thus, the spread of the Delta variant is associated with an escape from antibodies that target non-RBD and RBD epitopes of the spike protein. The SARS-CoV-2 Delta variant partially evades neutralization by several monoclonal antibodies and by sera from individuals who have had COVID-19, but two doses of anti-COVID-19 vaccines still generate a strong neutralizing response.

1,462 citations

Journal ArticleDOI
TL;DR: Although IMT has been suggested to represent an important risk marker, according to the current evidence it does not fulfill the characteristics of an accepted risk factor and will help to improve the power of randomized clinical trials incorporating IMT measurements and to facilitate the merging of large databases for meta-analyses.
Abstract: Intima-media thickness (IMT) is increasingly used as a surrogate end point of vascular outcomes in clinical trials aimed at determining the success of interventions that lower risk factors for atherosclerosis and associated diseases (stroke, myocardial infarction and peripheral artery diseases). The necessity to promote further criteria to distinguish early atherosclerotic plaque formation from thickening of IMT and to standardize IMT measurements is expressed through this updated consensus. Plaque is defined as a focal structure that encroaches into the arterial lumen of at least 0.5 mm or 50% of the surrounding IMT value or demonstrates a thickness >1.5 mm as measured from the media-adventitia interface to the intima-lumen interface. Standard use of IMT measurements is based on physics, technical and disease-related principles as well as agreements on how to perform, interpret and document study results. Harmonization of carotid image acquisition and analysis is needed for the comparison of the IMT results obtained from epidemiological and interventional studies around the world. The consensus concludes that there is no need to 'treat IMT values' nor to monitor IMT values in individual patients apart from exceptions named, which emphasize that inside randomized clinical trials should be performed. Although IMT has been suggested to represent an important risk marker, according to the current evidence it does not fulfill the characteristics of an accepted risk factor. Standardized methods recommended in this consensus statement will foster homogenous data collection and analysis. This will help to improve the power of randomized clinical trials incorporating IMT measurements and to facilitate the merging of large databases for meta-analyses.

1,459 citations

Journal ArticleDOI
Corinne Le Quéré1, Robbie M. Andrew, Pierre Friedlingstein2, Stephen Sitch2, Judith Hauck3, Julia Pongratz4, Julia Pongratz5, Penelope A. Pickers1, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell6, Almut Arneth7, Vivek K. Arora, Leticia Barbero8, Leticia Barbero9, Ana Bastos4, Laurent Bopp10, Frédéric Chevallier11, Louise Chini12, Philippe Ciais11, Scott C. Doney13, Thanos Gkritzalis14, Daniel S. Goll11, Ian Harris1, Vanessa Haverd6, Forrest M. Hoffman15, Mario Hoppema3, Richard A. Houghton16, George C. Hurtt12, Tatiana Ilyina5, Atul K. Jain17, Truls Johannessen18, Chris D. Jones19, Etsushi Kato, Ralph F. Keeling20, Kees Klein Goldewijk21, Kees Klein Goldewijk22, Peter Landschützer5, Nathalie Lefèvre23, Sebastian Lienert24, Zhu Liu25, Zhu Liu1, Danica Lombardozzi26, Nicolas Metzl23, David R. Munro27, Julia E. M. S. Nabel5, Shin-Ichiro Nakaoka28, Craig Neill29, Craig Neill30, Are Olsen18, T. Ono, Prabir K. Patra31, Anna Peregon11, Wouter Peters32, Wouter Peters33, Philippe Peylin11, Benjamin Pfeil34, Benjamin Pfeil18, Denis Pierrot9, Denis Pierrot8, Benjamin Poulter35, Gregor Rehder36, Laure Resplandy37, Eddy Robertson19, Matthias Rocher11, Christian Rödenbeck5, Ute Schuster2, Jörg Schwinger34, Roland Séférian11, Ingunn Skjelvan34, Tobias Steinhoff38, Adrienne J. Sutton39, Pieter P. Tans39, Hanqin Tian40, Bronte Tilbrook29, Bronte Tilbrook30, Francesco N. Tubiello41, Ingrid T. van der Laan-Luijkx33, Guido R. van der Werf42, Nicolas Viovy11, Anthony P. Walker15, Andy Wiltshire19, Rebecca Wright1, Sönke Zaehle5, Bo Zheng11 
University of East Anglia1, University of Exeter2, Alfred Wegener Institute for Polar and Marine Research3, Ludwig Maximilian University of Munich4, Max Planck Society5, Commonwealth Scientific and Industrial Research Organisation6, Karlsruhe Institute of Technology7, Atlantic Oceanographic and Meteorological Laboratory8, Cooperative Institute for Marine and Atmospheric Studies9, École Normale Supérieure10, Centre national de la recherche scientifique11, University of Maryland, College Park12, University of Virginia13, Flanders Marine Institute14, Oak Ridge National Laboratory15, Woods Hole Research Center16, University of Illinois at Urbana–Champaign17, Geophysical Institute, University of Bergen18, Met Office19, University of California, San Diego20, Utrecht University21, Netherlands Environmental Assessment Agency22, University of Paris23, Oeschger Centre for Climate Change Research24, Tsinghua University25, National Center for Atmospheric Research26, Institute of Arctic and Alpine Research27, National Institute for Environmental Studies28, Cooperative Research Centre29, Hobart Corporation30, Japan Agency for Marine-Earth Science and Technology31, University of Groningen32, Wageningen University and Research Centre33, Bjerknes Centre for Climate Research34, Goddard Space Flight Center35, Leibniz Institute for Baltic Sea Research36, Princeton University37, Leibniz Institute of Marine Sciences38, National Oceanic and Atmospheric Administration39, Auburn University40, Food and Agriculture Organization41, VU University Amsterdam42
TL;DR: In this article, the authors describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties, including emissions from land use and land-use change data and bookkeeping models.
Abstract: . Accurate assessment of anthropogenic carbon dioxide ( CO2 ) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions ( EFF ) are based on energy statistics and cement production data, while emissions from land use and land-use change ( ELUC ), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate ( GATM ) is computed from the annual changes in concentration. The ocean CO2 sink ( SOCEAN ) and terrestrial CO2 sink ( SLAND ) are estimated with global process models constrained by observations. The resulting carbon budget imbalance ( BIM ), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ . For the last decade available (2008–2017), EFF was 9.4±0.5 GtC yr −1 , ELUC 1.5±0.7 GtC yr −1 , GATM 4.7±0.02 GtC yr −1 , SOCEAN 2.4±0.5 GtC yr −1 , and SLAND 3.2±0.8 GtC yr −1 , with a budget imbalance BIM of 0.5 GtC yr −1 indicating overestimated emissions and/or underestimated sinks. For the year 2017 alone, the growth in EFF was about 1.6 % and emissions increased to 9.9±0.5 GtC yr −1 . Also for 2017, ELUC was 1.4±0.7 GtC yr −1 , GATM was 4.6±0.2 GtC yr −1 , SOCEAN was 2.5±0.5 GtC yr −1 , and SLAND was 3.8±0.8 GtC yr −1 , with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 405.0±0.1 ppm averaged over 2017. For 2018, preliminary data for the first 6–9 months indicate a renewed growth in EFF of + 2.7 % (range of 1.8 % to 3.7 %) based on national emission projections for China, the US, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. The analysis presented here shows that the mean and trend in the five components of the global carbon budget are consistently estimated over the period of 1959–2017, but discrepancies of up to 1 GtC yr −1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations show (1) no consensus in the mean and trend in land-use change emissions, (2) a persistent low agreement among the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models, originating outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding the global carbon cycle compared with previous publications of this data set (Le Quere et al., 2018, 2016, 2015a, b, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2018 .

1,458 citations


Authors

Showing all 102613 results

NameH-indexPapersCitations
Guido Kroemer2361404246571
David H. Weinberg183700171424
Paul M. Thompson1832271146736
Chris Sander178713233287
Sophie Henrot-Versille171957157040
Richard H. Friend1691182140032
George P. Chrousos1691612120752
Mika Kivimäki1661515141468
Martin Karplus163831138492
William J. Sandborn1621317108564
Darien Wood1602174136596
Monique M.B. Breteler15954693762
Paul Emery1581314121293
Wolfgang Wagner1562342123391
Joao Seixas1531538115070
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

95% related

École Normale Supérieure
99.4K papers, 3M citations

94% related

Imperial College London
209.1K papers, 9.3M citations

93% related

Sapienza University of Rome
155.4K papers, 4.3M citations

93% related

University of Groningen
69.1K papers, 2.9M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202376
2022602
202116,433
202015,008
201911,047
20189,091