scispace - formally typeset
Search or ask a question
Institution

University of Paris

EducationParis, France
About: University of Paris is a education organization based out in Paris, France. It is known for research contribution in the topics: Population & Transplantation. The organization has 102426 authors who have published 174180 publications receiving 5041753 citations. The organization is also known as: Sorbonne.


Papers
More filters
Journal ArticleDOI
TL;DR: Authors F. Piscaglia, C. Nolsøe, M. M. Gilja, and H. P. Weskott review the manuscript and suggest ways in which the manuscript could have been improved.
Abstract: Authors F. Piscaglia1, C. Nolsøe2, C. F. Dietrich3, D. O. Cosgrove4, O. H. Gilja5, M. Bachmann Nielsen6, T. Albrecht7, L. Barozzi8, M. Bertolotto9, O. Catalano10, M. Claudon11, D. A. Clevert12, J. M. Correas13, M. D’Onofrio14, F. M. Drudi15, J. Eyding16, M. Giovannini17, M. Hocke18, A. Ignee19, E. M. Jung20, A. S. Klauser21, N. Lassau22, E. Leen23, G. Mathis24, A. Saftoiu25, G. Seidel26, P. S. Sidhu27, G. ter. Haar28, D. Timmerman29, H. P. Weskott30

975 citations

Journal ArticleDOI
TL;DR: The concentration of measure phenomenon in product spaces roughly states that, if a set A in a product ΩN of probability spaces has measure at least one half, "most" of the points of Ωn are "close" to A as mentioned in this paper.
Abstract: The concentration of measure phenomenon in product spaces roughly states that, if a set A in a product ΩN of probability spaces has measure at least one half, “most” of the points of Ωn are “close” to A. We proceed to a systematic exploration of this phenomenon. The meaning of the word “most” is made rigorous by isoperimetrictype inequalities that bound the measure of the exceptional sets. The meaning of the work “close” is defined in three main ways, each of them giving rise to related, but different inequalities. The inequalities are all proved through a common scheme of proof. Remarkably, this simple approach not only yields qualitatively optimal results, but, in many cases, captures near optimal numerical constants. A large number of applications are given, in particular to Percolation, Geometric Probability, Probability in Banach Spaces, to demonstrate in concrete situations the extremely wide range of application of the abstract tools.

975 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a more direct test of the gender roles hypothesis by analyzing community epidemiological data collected from respondents surveyed in 15 countries as part of the World Health Organization (WHO) World Mental Health (WMH) Survey Initiative.
Abstract: Epidemiological surveys have consistently documented significantly higher rates of anxiety and mood disorders among women than men1, 2 and significantly higher rates of externalizing and substance use disorders among men than women.3–5 Although a number of biological, psychosocial, and biopsychosocial hypotheses have been proposed to account for these patterns,6–8 evidence that gender differences in depression9, 10 and substance use11–13 have narrowed in a number of countries has led to a special interest in the “gender roles” hypothesis. The latter asserts that gender differences in the prevalence of mental disorders are due to differences in the typical stressors, coping resources, and opportunity structures for expressing psychological distress made available differentially to women and men in different countries at different points in history.14, 15 Consistent with this hypothesis, evidence of decreasing gender differences in depression and substance use has been found largely in countries where the roles of women have improved in terms of opportunities for employment, access to birth control, and other indicators of increasing gender role equality, while trend studies in countries where gender roles have been more static11, 16 or over periods of historical time when gender role changes have been small17 have failed to document a reduction in gender differences in depression or substance use. Most research aimed at investigating the gender roles hypothesis has focused on individual-level variation in roles in a single country at a single point in time.18–20 This approach is limited in three ways. First, selection bias into roles due to pre-existing mental illness (e.g., women with agoraphobia having a higher probability than other women of becoming homemakers rather than seeking employment outside the home) confounds attempts to evaluate the causal effects of gender roles. Second, gender differences are largely confined to differences in lifetime risk, with much less evidence for gender differences in recent prevalence among lifetime cases.21 This means that investigation of the determinants of gender difference should focus on lifetime first onset rather than on the recent prevalence that has been the focus of most studies. Third, as the gender roles hypothesis is a hypothesis about the effects of social context, a rigorous test of the hypothesis requires an analysis of societal-level time-space variation rather than analysis of the individual-level variation that has been the focus of most studies. A small number of cross-national comparative studies have examined spatial variation in gender differences in depression22 and alcohol abuse13 at a point in time or, more rarely, at two points in time.11 Although these studies raised the possibility that gender roles might be associated with variation in the magnitude of gender differences in these outcomes, they were unable to test this hypothesis due to the small number of cross-sectional country-level observations included in the analyses. The current report provides a more direct test of the gender roles hypothesis by analyzing community epidemiological data collected from respondents surveyed in 15 countries as part of the World Health Organization (WHO) World Mental Health (WMH) Survey Initiative.21 Previous cross-national comparisons of gender differences in mental illness focused on cross-sectional differences. We, in comparison, use retrospective reports obtained in the WMH surveys about lifetime occurrence and age-of-onset of mental disorders in different birth cohorts to study time-space variation in lifetime risk. Specifically, we examine both variation across cohorts within a single country (i.e., temporal variation) and variation across countries within a single cohort (i.e., special variation) in lifetime risk of mental disorders as a function of time-space variation in the traditionality of gender roles. Lifetime risk is the focus rather than recent prevalence even though accuracy of reporting is doubtlessly better for recent episodes than lifetime occurrence in order to address the fact that gender differences in lifetime risk are much more robust than gender differences in current prevalence among lifetime cases

972 citations

Book
01 Jan 2003
TL;DR: This chapter discusses automata, automatic sequences, and other models of computation in number theory and algebra, as well as number systems and numeration systems, and some examples of these models are presented.
Abstract: Preface 1. Stringology 2. Number theory and algebra 3. Numeration systems 4. Finite automata and other models of computation 5. Automatic sequences 6. Uniform morphisms and automatic sequences 7. Morphic sequences 8. Frequency of letters 9. Characteristic words 10. Subwords 11. Cobham's theorem 12. Formal power series 13. Automatic real numbers 14. Multidimensional automatic sequences 15. Automaticity 16. k-regular sequences 17. Physics Appendix. Hints, references and solutions for selected exercises Bibliography Index.

970 citations

Journal ArticleDOI
Heike Rauer1, Heike Rauer2, C. Catala3, Conny Aerts4  +164 moreInstitutions (51)
TL;DR: The PLATO 2.0 mission as discussed by the authors has been selected for ESA's M3 launch opportunity (2022/24) to provide accurate key planet parameters (radius, mass, density and age) in statistical numbers.
Abstract: PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4–16 mag). It focusses on bright (4–11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4–10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2–3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA’s Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.

965 citations


Authors

Showing all 102613 results

NameH-indexPapersCitations
Guido Kroemer2361404246571
David H. Weinberg183700171424
Paul M. Thompson1832271146736
Chris Sander178713233287
Sophie Henrot-Versille171957157040
Richard H. Friend1691182140032
George P. Chrousos1691612120752
Mika Kivimäki1661515141468
Martin Karplus163831138492
William J. Sandborn1621317108564
Darien Wood1602174136596
Monique M.B. Breteler15954693762
Paul Emery1581314121293
Wolfgang Wagner1562342123391
Joao Seixas1531538115070
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

95% related

École Normale Supérieure
99.4K papers, 3M citations

94% related

Imperial College London
209.1K papers, 9.3M citations

93% related

Sapienza University of Rome
155.4K papers, 4.3M citations

93% related

University of Groningen
69.1K papers, 2.9M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202376
2022602
202116,433
202015,008
201911,047
20189,090