Institution
University of Patras
Education•Pátrai, Greece•
About: University of Patras is a(n) education organization based out in Pátrai, Greece. It is known for research contribution in the topic(s): Population & Catalysis. The organization has 13372 authors who have published 31263 publication(s) receiving 677159 citation(s). The organization is also known as: Panepistímio Patrón.
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: In this article, the authors reviewed existing knowledge with regard to organic aerosol (OA) of importance for global climate modelling and defined critical gaps needed to reduce the involved uncertainties, and synthesized the information to provide a continuous analysis of the flow from the emitted material to the atmosphere up to the point of the climate impact of the produced organic aerosols.
Abstract: The present paper reviews existing knowledge with regard to Organic Aerosol (OA) of importance for global climate modelling and defines critical gaps needed to reduce the involved uncertainties. All pieces required for the representation of OA in a global climate model are sketched out with special attention to Secondary Organic Aerosol (SOA): The emission estimates of primary carbonaceous particles and SOA precursor gases are summarized. The up-to-date understanding of the chemical formation and transformation of condensable organic material is outlined. Knowledge on the hygroscopicity of OA and measurements of optical properties of the organic aerosol constituents are summarized. The mechanisms of interactions of OA with clouds and dry and wet removal processes parameterisations in global models are outlined. This information is synthesized to provide a continuous analysis of the flow from the emitted material to the atmosphere up to the point of the climate impact of the produced organic aerosol. The sources of uncertainties at each step of this process are highlighted as areas that require further studies.
2,630 citations
[...]
TL;DR: In this paper, an extended account of the various chemical strategies for grafting polymers onto carbon nanotubes and the manufacturing of carbon-nanotube/polymer nanocomposites is given.
Abstract: Carbon nanotubes have long been recognized as the stiffest and strongest man-made material known to date. In addition, their high electrical conductivity has roused interest in the area of electrical appliances and communication related applications. However, due to their miniscule size, the excellent properties of these nanostructures can only be exploited if they are homogeneously embedded into light-weight matrices as those offered by a whole series of engineering polymers. We review the present state of polymer nanocomposites research in which the fillers are carbon nanotubes. In order to enhance their chemical affinity to engineering polymer matrices, chemical modification of the graphitic sidewalls and tips is necessary. In this review, an extended account of the various chemical strategies for grafting polymers onto carbon nanotubes and the manufacturing of carbon nanotube/polymer nanocomposites is given. The mechanical and electrical properties to date of a whole range of nanocomposites of various carbon nanotube contents are also reviewed in an attempt to facilitate progress in this emerging area.
2,561 citations
[...]
TL;DR: In this article, the effect of oxidation on the structural integrity of multiwalled carbon nanotubes through acidic (nitric acid and a mixture of sulfuric acid and hydrogen peroxide) and basic (ammonium hydroxide/hydrogen peroxide), agents has been studied.
Abstract: The effect of oxidation on the structural integrity of multiwalled carbon nanotubes through acidic (nitric acid and a mixture of sulfuric acid and hydrogen peroxide) and basic (ammonium hydroxide/hydrogen peroxide) agents has been studied. In order to purify the as-received material, a non-oxidative treatment (with hydrochloric acid) was also applied. Electron microscopy and thermogravimetric analysis clearly revealed that the nitric acid-treated material under reflux conditions suffered the highest degree of degradation, such as, nanotube shortening and additional defect generation in the graphitic network. Basic oxidative treatment led to the complete removal of amorphous carbon and metal oxide impurities but the structural integrity was found to be intact. X-ray photoelectron spectroscopy was employed to confirm the different functionalities produced for each oxidation agent, whereas titration measurements determined the relative concentration of carboxylic functions onto the graphitic surface. Moreover, a general relationship between the chemical treatment and the amount of non-graphitic carbon was established by means of Raman spectroscopy measurements. The possibility of controlling the required amount of functionality, carboxylic and hydroxyl, via these oxidation procedures is discussed.
2,223 citations
[...]
University of Cambridge1, Istituto Italiano di Tecnologia2, Lancaster University3, University of Manchester4, Catalan Institution for Research and Advanced Studies5, Technical University of Denmark6, Nokia7, Queen Mary University of London8, fondazione bruno kessler9, University of Trento10, Technische Universität München11, Polytechnic University of Milan12, Centre national de la recherche scientifique13, University of Trieste14, University of Ioannina15, University of Geneva16, Trinity College, Dublin17, Texas Instruments18, University of Paris19, Spanish National Research Council20, Leiden University21, Delft University of Technology22, University of Patras23, École Normale Supérieure24, Radboud University Nijmegen25, Nest Labs26, Airbus UK27, Seoul National University28, Yonsei University29, University of Oxford30, Chalmers University of Technology31, University of Groningen32, STMicroelectronics33, Chemnitz University of Technology34, Max Planck Society35, Aalto University36
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.
2,215 citations
[...]
Joint Genome Institute1, Bielefeld University2, University of California, Davis3, University of Technology, Sydney4, Bigelow Laboratory For Ocean Sciences5, University of British Columbia6, University of Nevada, Las Vegas7, University of Patras8, Woods Hole Oceanographic Institution9, University of Illinois at Urbana–Champaign10, University of Queensland11
TL;DR: This study applies single-cell genomics to target and sequence 201 archaeal and bacterial cells from nine diverse habitats belonging to 29 major mostly uncharted branches of the tree of life and provides a systematic step towards a better understanding of biological evolution on the authors' planet.
Abstract: Genome sequencing enhances our understanding of the biological world by providing blueprints for the evolutionary and functional diversity that shapes the biosphere. However, microbial genomes that are currently available are of limited phylogenetic breadth, owing to our historical inability to cultivate most microorganisms in the laboratory. We apply single-cell genomics to target and sequence 201 uncultivated archaeal and bacterial cells from nine diverse habitats belonging to 29 major mostly uncharted branches of the tree of life, so-called 'microbial dark matter'. With this additional genomic information, we are able to resolve many intra- and inter-phylum-level relationships and to propose two new superphyla. We uncover unexpected metabolic features that extend our understanding of biology and challenge established boundaries between the three domains of life. These include a novel amino acid use for the opal stop codon, an archaeal-type purine synthesis in Bacteria and complete sigma factors in Archaea similar to those in Bacteria. The single-cell genomes also served to phylogenetically anchor up to 20% of metagenomic reads in some habitats, facilitating organism-level interpretation of ecosystem function. This study greatly expands the genomic representation of the tree of life and provides a systematic step towards a better understanding of biological evolution on our planet.
1,615 citations
Authors
Showing all 13372 results
Name | H-index | Papers | Citations |
---|---|---|---|
Thomas J. Meyer | 120 | 1078 | 68519 |
Thoralf M. Sundt | 112 | 755 | 55708 |
Chihaya Adachi | 112 | 908 | 61403 |
Eleftherios P. Diamandis | 110 | 1064 | 52654 |
Roland Siegwart | 105 | 1154 | 51473 |
T. Geralis | 99 | 808 | 52221 |
Spyros N. Pandis | 97 | 377 | 51660 |
Michael Tsapatsis | 77 | 375 | 20051 |
George K. Karagiannidis | 76 | 653 | 24066 |
Eleftherios Mylonakis | 75 | 448 | 21413 |
Matthias Mörgelin | 75 | 332 | 18711 |
Constantinos C. Stoumpos | 75 | 194 | 27991 |
Raymond Alexanian | 75 | 211 | 21923 |
Mark J. Ablowitz | 74 | 374 | 27715 |
John Lygeros | 73 | 667 | 21508 |