scispace - formally typeset
Search or ask a question

Showing papers by "University of Patras published in 2015"


Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations


Journal ArticleDOI
TL;DR: Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures.
Abstract: and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures Vasilios Georgakilas,† Jason A. Perman,‡ Jiri Tucek,‡ and Radek Zboril*,‡ †Material Science Department, University of Patras, 26504 Rio Patras, Greece ‡Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17 listopadu 1192/12, 771 46 Olomouc, Czech Republic

1,366 citations


Journal ArticleDOI
TL;DR: The literature on atmospheric particulate maffer (PM), or atmospheric aerosol, has increased enormously over the last 2 decades and amounts now to some 1500-2000 papers per year in the refereed literature.
Abstract: The literature on atmospheric particulate maffer (PM), or atmospheric aerosol, has increased enormously over the last 2 decades and amounts now to some 1500—2000 papers per year in the refereed literature. This is in part due to the enormous advances in measurement technologies, which have allowed for an increasingly accurate understanding of the chemical composition and of the physical properties of atmospheric particles and of their processes in the atmosphere. The growing scientific interest in atmospheric aerosol particles is due to their high importance for environmental policy. In fact, particulate maffer constitutes one of the most challenging problems both for air quality and for climate change policies. In this context, this paper reviews the most recent results within the atmospheric aerosol sciences and thepoticy needs, which have driven much ofthe increase in monitoring and mechanistic research over the last 2 decades. The synthesis reveals many new processes and developments in the science underpinning climate—aerosol interactions and effects of PM on human health and the environment. However, while airborne particulate matter is responsible for globally important influences on premature human mortality, we stijl do not know the relative importance of the different chemical components of PM for these effects. Likewise, the magnitude of the overall effects of PM on climate remains highly uncertain. Despite the uncertainty there are many things that could be done to mitigate local and global problems of atmospheric PM. Recent analyses have shown that reducing black carbon (BC) emissions, using known control measures, would reduce global wanning and delay the time when anthropogenic effects on global temperature would exceed 2°C. Likewise, cost-effective control measures on ammonia, an important agricultural precursor gas for secondary inorganic aerosols (SlA), would reduce regional eutrophication and PM concentrations in large areas of Europe, China and the USA. Thus, there is much that could be done to reduce the effects of atmospheric PM on the climate and the health of the environment and the human population. A prioritized list of actions to mitigate the full range of effects ofPM is currently undeliverable due to shortcomings in the knowledge of aerosol science; among the shortcomings, the roles of PM in global climate and the relative roles of different PM precursor sources and their response to climate and land use change over the remaining decades of this century are prominent. In any case, the evidence from this paper strongly advocates for an integrated approach to air quality and climate policies.

648 citations


Journal ArticleDOI
TL;DR: An extensive literature survey was performed in order to present the current stage of knowledge and progress made in the occurrence of TPs of PPCPs and IDs in raw and treated wastewaters.

465 citations


Journal ArticleDOI
TL;DR: In this article, the authors discuss how changes in water level and salinity related to climate change and water abstraction affect the ecosystem structure, function, biodiversity and ecological state of lakes and reservoirs.
Abstract: According to the Intergovernmental Panel on Climate Change report released in September 2014, unprecedented changes in temperature and precipitation patterns have been recorded globally in recent decades and further change is predicted to occur in the near future, mainly as the result of human activity. In particular, projections show that the Mediterranean climate zone will be markedly affected with significant implications for lake water levels and salinity. This may be exacerbated by increased demands for irrigation water. Based on long-term data from seven lakes and reservoirs covering a geographical gradient of 52° of latitudes and a literature review, we discuss how changes in water level and salinity related to climate change and water abstraction affect the ecosystem structure, function, biodiversity and ecological state of lakes and reservoirs. We discuss mitigation measures to counteract the negative effects on ecological status that are likely to result from changes in climate and water abstraction practices. Finally, we highlight research required to improve knowledge of the impacts of anthropogenically induced changes on lake water level and consequent changes in salinity.

359 citations


Journal ArticleDOI
TL;DR: In this paper, the results of discussions inside the CIRP Collaborative Working Group (CWG) on Learning Factories enables a lively exchange on the topic of learning factories for future oriented research and education in manufacturing.

280 citations


Journal ArticleDOI
TL;DR: Results show that SDM fibers achieve a 1185-fold (18-fold) spectral-spatial efficiency increase compared with the 276-SMF bundle (single-core fiber) currently installed on the ground.
Abstract: Single-mode fiber's physical capacity boundaries will soon be reached; hence, alternative solutions are much needed to overcome the multiplying and remarkably large bandwidth requests. Space division multiplexing (SDM) using multicore fibers (MCFs), multielement fibers, multimode fibers, and their combination; few-mode MCFs; or fibers based on orbital angular momentum are considered to be the propitious stepping-stones to overcome the capacity crunch of conventional single-core fibers. We critically review research progress on SDM fibers and network components, and we introduce two figures of merit aiming for quantitative evaluation of technologies such as amplifiers, fan-in/fan-out multiplexers, transmitters, switches, and SDM nodes. Results show that SDM fibers achieve a 1185-fold (18-fold) spectral–spatial efficiency increase compared with the 276-SMF bundle (single-core fiber) currently installed on the ground. In addition, an analysis of crosstalk in MCFs shows how SDM concepts can be further exploited to fit in various optical networks such as core, metro, and especially future intra-data center optical interconnects. Finally, research challenges and future directions are discussed.

272 citations


Journal ArticleDOI
01 Mar 2015-Carbon
TL;DR: In this paper, the optical properties of boron-doped carbon dots were studied in respect to their photoluminescence and nonlinear optical response, and it was shown that the effect of BORON doping on C-dots' optical properties was significant.

267 citations


Journal ArticleDOI
TL;DR: The extraordinary sensitivity and fast response of this Mg(2+) metal-organic framework for water, and its reusability make it one of the most powerful water sensors known.
Abstract: The development of efficient sensors for the determination of the water content in organic solvents is highly desirable for a number of chemical industries. Presented herein is a Mg(2+) metal-organic framework (MOF), which exhibits the remarkable capability to rapidly detect traces of water (0.05-5 % v/v) in various organic solvents through an unusual turn-on luminescence sensing mechanism. The extraordinary sensitivity and fast response of this MOF for water, and its reusability make it one of the most powerful water sensors known.

259 citations


Journal ArticleDOI
TL;DR: In this paper, the authors deal with the design of assembly stations, where human-robot collaborative tasks are carried out, based on the assembly process specifications, different control, safety and operator support strategies have to be implemented in order for the human safety and the overall system's productivity to be ensured.

256 citations


Journal ArticleDOI
TL;DR: The nanoparticles synthesized by Bacillus pumilus, B. persicus, and Bacillus licheniformis showed an excellent in vitro antimicrobial activity against important human pathogens and a considerable antiviral activity against the Bean Yellow Mosaic Virus.
Abstract: Extracellular agents produced by newly isolated bacterial strains were able to catalyze the synthesis of silver nanoparticles (AgNPs). The most effective isolates were identified as Bacillus pumilus, B. persicus and B. licheniformis using molecular identification. DLS analysis revealed that the AgNPs synthesized by the above strains were in the size range of 77-92 nm. TEM observations shown that the nanoparticles were coated with a capping agent, which was probably involved in nanoparticles stabilization allowing their perfect dispersion in aqueous solutions. FTIR analyses indicated the presence of proteins in the capping agent of the nanoparticles and suggested that the oxidation of hydroxyl groups of peptide hydrolysates (originated from the growth medium) is coupled to the reduction of silver ions. Energy Dispersive X-ray Spectroscopy confirmed the above results. The nanoparticles, especially those synthesized by B. licheniformis, were stable (zeta potential ranged from -16.6 to -21.3 mV) and showed an excellent in vitro antimicrobial activity against important human pathogens and a considerable antiviral activity against the Bean Yellow Mosaic Virus. The significance of the particular antiviral activity is highlighted, given the significant yield reduction in fava bean crops resulting from Bean Yellow Mosaic Virus infections, in many African countries.

Journal ArticleDOI
TL;DR: In this article, the requirements and properties of membrane separators for lithium-ion batteries, the recent progress on the different types of separators developed, and the manufacturing methods used for their production are discussed.
Abstract: Recently, much effort has been devoted to the development of battery separators for lithium-ion batteries for high-power, high-energy applications ranging from portable electronics to large-scale energy storage for power grids. The separator plays a key role in battery construction because it functions as the physical barrier to prevent electronic contact between the two electrodes and at the same time serves as an electrolyte reservoir, facilitating the ionic conduction. The purpose of this Review is to describe the requirements and properties of membrane separators for lithium-ion batteries, the recent progress on the different types of separators developed, and the manufacturing methods used for their production. Specifically the large-scale manufacturing processes are highlighted along with the processing parameters that affect their properties. The outlook and future directions regarding the development of advanced separator technologies are also discussed.

Journal ArticleDOI
01 Nov 2015-Stroke
TL;DR: In this paper, the authors compared and appraised contemporary guidelines on management of asymptomatic and symptomatic carotid artery stenosis, and systematically searched for guidelines for different types of stenosis.
Abstract: Background and Purpose—We systematically compared and appraised contemporary guidelines on management of asymptomatic and symptomatic carotid artery stenosis. Methods—We systematically searched for...

Journal ArticleDOI
TL;DR: The reverse osmosis concentrate, after a nanofiltration, containing the low-molecular-weight compounds, was further treated with resin adsorption/desorption, for the recovery of phenols and their separation from carbohydrates.

Journal ArticleDOI
TL;DR: In this paper, a revised bottom-up emission inventory for residential wood combustion (RWC) accounting for the semivolatile components of the emissions was constructed and used as input for two chemical transport models (CTMs), PMCAMx and EMEP MSC-W.
Abstract: Currently residential wood combustion (RWC) is increasing in Europe because of rising fossil fuel prices but also due to climate change mitigation policies. However, especially in small-scale applications, RWC may cause high emissions of particulate matter (PM). Recently we have developed a new high-resolution (7 x 7 km) anthropogenic carbonaceous aerosol emission inventory for Europe. The inventory indicated that about half of the total PM2.5 emission in Europe is carbonaceous aerosol and identified RWC as the largest organic aerosol source in Europe. The inventory was partly based on national reported PM emissions. Use of this organic aerosol inventory as input for two chemical transport models (CTMs), PMCAMx and EMEP MSC-W, revealed major underestimations of organic aerosol in winter time, especially for regions dominated by RWC. Interestingly, this was not universal but appeared to differ by country. In the present study we constructed a revised bottom-up emission inventory for RWC accounting for the semivolatile components of the emissions. The revised RWC emissions are higher than those in the previous inventory by a factor of 2-3 but with substantial inter-country variation. The new emission inventory served as input for the CTMs and a substantially improved agreement between measured and predicted organic aerosol was found. The revised RWC inven-tory improves the model-calculated organic aerosol significantly. Comparisons to Scandinavian source apportionment studies also indicate substantial improvements in the modelled wood-burning component of organic aerosol. This suggests that primary organic aerosol emission inventories need to be revised to include the semivolatile organic aerosol that is formed almost instantaneously due to dilution and cooling of the flue gas or exhaust. Since RWC is a key source of fine PM in Europe, a major revision of the emission estimates as proposed here is likely to influence source-receptor matrices and modelled source apportionment. Since usage of biofuels in small combustion units is a globally significant source, the findings presented here are also relevant for regions outside of Europe.

Journal ArticleDOI
TL;DR: In this paper, Inflammatory processes have been identified as key mediators of the deleterious effects of ischemia/reperfusion in ST-segment-elevation myocardial infarction.
Abstract: Background—Inflammatory processes have been identified as key mediators of the deleterious effects of ischemia/reperfusion in ST-segment–elevation myocardial infarction. Colchicine is a substance w...

Journal ArticleDOI
TL;DR: Electronic cigarettes produce high levels of aldehyde only in dry puff conditions, in which the liquid overheats, causing a strong unpleasant taste that e-cigarette users detect and avoid.
Abstract: Background and aims Aldehydes are emitted by electronic cigarettes due to thermal decomposition of liquid components. Although elevated levels have been reported with new-generation high-power devices, it is unclear whether they are relevant to true exposure of users (vapers) because overheating produces an unpleasant taste, called a dry puff, which vapers learn to avoid. The aim was to evaluate aldehyde emissions at different power levels associated with normal and dry puff conditions. Design Two customizable atomizers were prepared so that one (A1) had a double wick, resulting in high liquid supply and lower chance of overheating at high power levels, while the other (A2) was a conventional setup (single wick). Experienced vapers took 4-s puffs at 6.5 watts (W), 7.5 W, 9 W and 10 W power levels with both atomizers and were asked to report whether dry puffs were generated. The atomizers were then attached to a smoking machine and aerosol was trapped. Setting Clinic office and analytical chemistry laboratory in Greece. Participants Seven experienced vapers. Measurements Aldehyde levels were measured in the aerosol. Findings All vapers identified dry puff conditions at 9 W and 10 W with A2. A1 did not lead to dry puffs at any power level. Minimal amounts of aldehydes per 10 puffs were found at all power levels with A1 (up to 11.3 µg for formaldehyde, 4.5 µg for acetaldehyde and 1.0 µg for acrolein) and at 6.5 W and 7.5 W with A2 (up to 3.7 µg for formaldehyde, 0.8 µg for acetaldehyde and 1.3 µg for acrolein). The levels were increased by 30 to 250 times in dry puff conditions (up to 344.6 µg for formaldehyde, 206.3 µg for acetaldehyde and 210.4 µg for acrolein, P < 0.001), while acetone was detected only in dry puff conditions (up to 22.5 µg). Conclusions Electronic cigarettes produce high levels of aldehyde only in dry puff conditions, in which the liquid overheats, causing a strong unpleasant taste that e-cigarette users detect and avoid. Under normal vaping conditions aldehyde emissions are minimal, even in new-generation high-power e-cigarettes.

Journal ArticleDOI
TL;DR: Efforts to coalesce human-genomics groups around concrete but compelling signature projects should accelerate the responsible implementation of genomic medicine in efforts to improve clinical care worldwide.
Abstract: Around the world, innovative genomic-medicine programs capitalize on singular capabilities arising from local health care systems, cultural or political milieus, and unusual selected risk alleles or disease burdens. Such individual efforts might benefit from the sharing of approaches and lessons learned in other locales. The U.S. National Human Genome Research Institute and the National Academy of Medicine recently brought together 25 of these groups to compare projects, to examine the current state of implementation and desired near-term capabilities, and to identify opportunities for collaboration that promote the responsible practice of genomic medicine. Efforts to coalesce these groups around concrete but compelling signature projects should accelerate the responsible implementation of genomic medicine in efforts to improve clinical care worldwide.

Journal ArticleDOI
TL;DR: In this paper, the sonochemical degradation of bisphenol A (BPA) in the presence of sodium persulfate (SPS) was investigated at 20 kHz and the liquid bulk temperature was either kept constant at 30°C or left uncontrolled and gradually increased up to 80°C.

Journal ArticleDOI
Anna Kopf1, Anna Kopf2, Mesude Bicak3, Renzo Kottmann2  +166 moreInstitutions (77)
TL;DR: This commentary outlines the establishment, function and aims of the Ocean Sampling Day Consortium and describes the vision for a sustainable study of marine microbial communities and their embedded functional traits.
Abstract: Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.

Journal ArticleDOI
TL;DR: In this article, the collective influence of destination personality and affective image on overall image formation of a domestic urban destination and subsequently its influence on tourists' behavioral intentions were examined in a study.
Abstract: The collective influence of destination personality and affective image on overall image formation of a domestic urban destination and subsequently its influence on tourists’ behavioral intentions were examined in this study. The sample consisted of 361 urban tourists and included both past visitors and nonvisitors of the urban destination under study. Data analysis confirmed the influential role of destination personality and affective image in the formation of overall destination image in both samples. In turn, overall image was a mediator of the relationships of destination personality and affective image with tourists’ behavioral intentions (i.e., intention to revisit the urban destination and intention to recommend the destination to others). Analysis of the data supported a two-factor solution of the destination personality construct, with the personality traits of sincerity and excitement emerging in the domestic urban context to influence past visitors’ and nonvisitors’ overall destination image p...

Journal ArticleDOI
TL;DR: In this paper, Bactrocera papayae, B. carambolae and B. dorsalis (Hendel) were identified as the senior synonym of B. philippinensis.
Abstract: Bactrocera papayae Drew & Hancock, Bactrocera philippinensis Drew & Hancock, Bactrocera carambolae Drew & Hancock, and Bactrocera invadens Drew, Tsuruta & White are four horticultural pest tephritid fruit fly species that are highly similar, morphologically and genetically, to the destructive pest, the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). This similarity has rendered the discovery of reliable diagnostic characters problematic, which, in view of the economic importance of these taxa and the international trade implications, has resulted in ongoing difficulties for many areas of plant protection and food security. Consequently, a major international collaborative and integrated multidisciplinary research effort was initiated in 2009 to build upon existing literature with the specific aim of resolving biological species limits among B. papayae, B. philippinensis, B. carambolae, B. invadens and B. dorsalis to overcome constraints to pest management and international trade. Bactrocera philippinensis has recently been synonymized with B. papayae as a result of this initiative and this review corroborates that finding; however, the other names remain in use. While consistent characters have been found to reliably distinguish B. carambolae from B. dorsalis, B. invadens and B. papayae, no such characters have been found to differentiate the latter three putative species. We conclude that B. carambolae is a valid species and that the remaining taxa, B. dorsalis, B. invadens and B. papayae, represent the same species. Thus, we consider B. dorsalis (Hendel) as the senior synonym of B. papayae Drew and Hancock syn.n. and B. invadens Drew, Tsuruta & White syn.n. A redescription of B. dorsalis is provided. Given the agricultural importance of B. dorsalis, this taxonomic decision will have significant global plant biosecurity implications, affecting pest management, quarantine, international trade, postharvest treatment and basic research. Throughout the paper, we emphasize the value of independent and multidisciplinary tools in delimiting species, particularly in complicated cases involving morphologically cryptic taxa.

Journal ArticleDOI
TL;DR: Strong sorption of the hydrophobic organic contaminant phenanthrene to the activated carbon or biochar surfaces was maintained following magnetite impregnation, while phenol sorption was diminished, probably due to enhanced carbon oxidation.

Journal ArticleDOI
TL;DR: The unique factors that distinguish it from acute spinal cord injury are noted, and further elucidation of the role of ischemia, currently a source of debate, will pave the way for further neuroprotective strategies to be developed to attenuate the physiological consequences of surgical decompression and augment its benefits.
Abstract: In this narrative review, we aim to outline what is currently known about the pathophysiology of cervical spondylotic myelopathy (CSM), the most common cause of spinal cord dysfunction. In particular, we note the unique factors that distinguish it from acute spinal cord injury. Despite its common occurrence, the reasons why some patients develop severe symptomatology while others have few or no symptoms despite radiographic evidence confirming similar degrees of compression is poorly understood. Neither is there a clear understanding of why certain patients have a stable clinical myelopathy and others present with only mild myelopathy. Moreover, the precise molecular mechanisms which contribute to the pathogenesis of the disease are incompletely understood. The current treatment method is decompression of the spinal cord but a lack of clinically relevant models of CSM have hindered the understanding of the full pathophysiology which would aid the development of new therapeutic avenues of investigation. Further elucidation of the role of ischemia, currently a source of debate, as well as the complex cascade of biomolecular events as a result of the unique pathophysiology in this disease will pave the way for further neuroprotective strategies to be developed to attenuate the physiological consequences of surgical decompression and augment its benefits.

Journal ArticleDOI
TL;DR: In this article, low cost copper phthalocyanine has been used as hole-transporting material for the construction of organolead halide solid state perovskite solar cells.
Abstract: Low cost copper phthalocyanine has been used as hole-transporting material for the construction of organolead halide solid state perovskite solar cells. The cells were assembled and tested under ambient conditions. They achieved a power conversion efficiency of 5.0% using copper phthalocyanine, which appears to have potential to replace the currently used organic hole transporters. The present work has also examined the possibility of upscaling by construction of small cell modules.

Journal ArticleDOI
TL;DR: An empirical evaluation of the SUS questionnaire in the context of LMSs’ perceived usability evaluation found that the perceived usability of the evaluated L MSs is at a satisfactory level, and that the validity and reliability of SUS for LMS’ evaluation remains robust even for small sample sizes.
Abstract: Perceived usability affects greatly student’s learning effectiveness and overall learning experience, and thus is an important requirement of educational software. The System Usability Scale (SUS) is a well-researched and widely used questionnaire for perceived usability evaluation. However, surprisingly few studies have used SUS to evaluate the perceived usability of learning management systems (LMSs). This paper presents an empirical evaluation of the SUS questionnaire in the context of LMSs’ perceived usability evaluation. Eleven studies involving 769 students were conducted, in which participants evaluated the usability of two LMSs (eClass and Moodle) used within courses of their curriculum. It was found that the perceived usability of the evaluated LMSs is at a satisfactory level (mean SUS score 76.27). Analysis of the results also demonstrated the validity and reliability of SUS for LMSs’ evaluation, and that it remains robust even for small sample sizes. Moreover, the following SUS attributes were investigated in the context of LMSs evaluation: gender, age, prior experience with the LMS, Internet self-efficacy, attitude towards the Internet and usage frequency of the LMS.

Journal ArticleDOI
TL;DR: Although at baseline both groups had similar plasma nicotine levels, smokers consistently exhibited lower levels at all time-periods; at 5-minutes the levels were lower by 46%, while during the subsequent period they were lower than those observed after smoking 1 tobacco cigarette.
Abstract: Electronic cigarettes (ECs) are nicotine delivery devices that are proposed as tobacco harm reduction products to smokers. Nicotine delivery from ECs is potentially important in their efficacy as smoking substitutes. Herein, nicotine delivery from using a new-generation EC device (variable-wattage, set at 9 W) was evaluated, comparing experienced (vapers) with naive users (smokers). Twenty-four vapers and 23 smokers participated to the study. They were asked to obtain 10 puffs in 5 minutes and then use the EC ad lib for 60 more minutes (total duration of use: 65 minutes). An 18 mg/mL nicotine-containing liquid was used. Blood samples were obtained at baseline, 5-minutes and every 15 minutes thereafter, while number of puffs and average puff duration were recorded. Although at baseline both groups had similar plasma nicotine levels, smokers consistently exhibited lower levels at all time-periods; at 5-minutes the levels were lower by 46%, while during the subsequent period they were lower by 43% (at 65-minutes) to 54% (at 20-minutes). Both groups took similar number of puffs, but smokers had average puff duration of 2.3 s compared to 3.5 s in vapers. Even in vapers, plasma nicotine levels at 5 minutes were lower than those observed after smoking 1 tobacco cigarette.

Journal ArticleDOI
TL;DR: Evaluating the cross-scale functioning of Natura 2000 implementation in 24 EU member states revealed that poor application of results of environmental impact assessments (EIA) was considered a major constraint, and conservation scientists were moderately satisfied with the implementation.
Abstract: Established under the European Union (EU) Birds and Habitats Directives, Natura 2000 is one of the largest international networks of protected areas. With the spatial designation of sites by the EU member states almost finalized, the biggest challenge still lying ahead is the appropriate management of the sites. To evaluate the cross-scale functioning of Natura 2000 implementation, we analyzed 242 questionnaires completed by conservation scientists involved in the implementation of Natura 2000 in 24 EU member states. Respondents identified 7 key drivers of the quality of Natura 2000 implementation. Ordered in decreasing evaluation score, these drivers included: network design, use of external resources, legal frame, scientific input, procedural frame, social input, and national or local policy. Overall, conservation scientists were moderately satisfied with the implementation of Natura 2000. Tree modeling revealed that poor application of results of environmental impact assessments (EIA) was considered a major constraint. The main strengths of the network included the substantial increase of scientific knowledge of the sites, the contribution of nongovernmental organizations, the adequate network design in terms of area and representativeness, and the adequacy of the EU legal frame. The main weaknesses of Natura 2000 were the lack of political will from local and national governments toward effective implementation; the negative attitude of local stakeholders; the lack of background knowledge of local stakeholders, which prevented well-informed policy decisions; and the understaffing of Natura 2000 management authorities. Top suggestions to improve Natura 2000 implementation were increase public awareness, provide environmental education to local communities, involve high-quality conservation experts, strengthen quality control of EIA studies, and establish a specific Natura 2000 fund.

Journal ArticleDOI
TL;DR: Inkjet printing has been shown to be an effective technology for coating of metal microneedles which can then be used for further transdermal drug delivery applications.

Journal ArticleDOI
TL;DR: In this paper, the latest achievements of semi-transparent PV windows and their impact on buildings energy performance and occupants comfort are reviewed in terms of cooling, heating, and artificial lighting.
Abstract: In the frame of zero-energy buildings, the integration of renewable energy sources along with energy saving strategies must be the target. PV glazing is an innovative technology which apart from electricity production can reduce energy consumption in terms of cooling, heating and artificial lighting. Thus, it mitigates the pollution and reduces associated costs. In this context, the latest achievements of semi-transparent PV windows and their impact on buildings energy performance and occupants comfort are reviewed.