scispace - formally typeset
Search or ask a question
Institution

University of Patras

EducationPátrai, Greece
About: University of Patras is a education organization based out in Pátrai, Greece. It is known for research contribution in the topics: Population & Catalysis. The organization has 13372 authors who have published 31263 publications receiving 677159 citations. The organization is also known as: Panepistímio Patrón.


Papers
More filters
Journal ArticleDOI
TL;DR: A data-driven approach for the remaining useful life (RUL) estimation of rolling element bearings based on ε-Support Vector Regression, with Wiener entropy utilized for the first time in the condition monitoring of rolling bearings.
Abstract: We report on a data-driven approach for the remaining useful life (RUL) estimation of rolling element bearings based on e-Support Vector Regression ( e-SVR). Lifetime data are analyzed and evaluated. The occurrence of critical faults in every test is located, and a critical operational threshold is established. Multiple statistical features from the time-domain, frequency domain, and time-scale domain through a wavelet transform are extracted from the recordings of two accelerometers, and assessed for their diagnostic performance. Among those features, Wiener entropy is utilized for the first time in the condition monitoring of rolling bearings. A SVR model is trained and tested for the prediction of RUL on unseen data. Special attention is given in the tuning and the optimization of the user-defined hyper-parameters of the e-SVR model. Error bounds are estimated at each prediction point through a Bayesian treatment of the classical SVR model. The results are in good agreement to the actual RUL curve for all the tested cases. Prognostic performance metrics are also provided, and the discussion on the test results concludes with the generic character of the proposed methodology and its applicability in any prognostic task.

226 citations

Book
16 Jun 2008
TL;DR: This book aims to document some of the most important architectural techniques that were invented, proposed, and applied to reduce both dynamic power and static power dissipation in processors and memory hierarchies by focusing on their common characteristics.
Abstract: In the last few years, power dissipation has become an important design constraint, on par with performance, in the design of new computer systems. Whereas in the past, the primary job of the computer architect was to translate improvements in operating frequency and transistor count into performance, now power efficiency must be taken into account at every step of the design process. While for some time, architects have been successful in delivering 40% to 50% annual improvement in processor performance, costs that were previously brushed aside eventually caught up. The most critical of these costs is the inexorable increase in power dissipation and power density in processors. Power dissipation issues have catalyzed new topic areas in computer architecture, resulting in a substantial body of work on more power-efficient architectures. Power dissipation coupled with diminishing performance gains, was also the main cause for the switch from single-core to multi-core architectures and slowdown in frequency increase. This book aims to document some of the most important architectural techniques that were invented, proposed, and applied to reduce both dynamic power and static power dissipation in processors and memory hierarchies. A significant number of techniques have been proposed for a wide range of situations and this book synthesizes those techniques by focusing on their common characteristics. Table of Contents: Introduction / Modeling, Simulation, and Measurement / Using Voltage and Frequency Adjustments to Manage Dynamic Power / Optimizing Capacitance and Switching Activity to Reduce Dynamic Power / Managing Static (Leakage) Power / Conclusions

226 citations

Journal ArticleDOI
TL;DR: In this article, the recently introduced end-bridging (EB) Monte Carlo move is revisited, and a thorough analysis of its geometric formulation and numerical implementation is given, along with detailed results from applying the move along with concerted rotation, in atomistic simulations of polyethylene (PE) melt systems with mean molecular lengths ranging from C78 up to C500, flat molecular weight distributions, and polydispersity indices I ranging from 1.02 to 1.12.
Abstract: The recently introduced end-bridging (EB) Monte Carlo move is revisited, and a thorough analysis of its geometric formulation and numerical implementation is given. Detailed results are presented from applying the move, along with concerted rotation, in atomistic simulations of polyethylene (PE) melt systems with mean molecular lengths ranging from C78 up to C500, flat molecular weight distributions, and polydispersity indices I ranging from 1.02 to 1.12. To avoid finite system-size effects, most simulations are executed in a superbox containing up to 5000 mers and special neighbor list strategies are implemented. For all chain lengths considered, excellent equilibration is observed of the thermodynamic and conformational properties of the melt at all length scales, from the level of the bond length to the level of the chain end-to-end vector. In sharp contrast, if no end bridging is allowed among the Monte Carlo moves, no equilibration is achieved, even for the C78 system. The polydispersity index I is f...

226 citations

Journal ArticleDOI
TL;DR: The primary goal of this comprehensive review is to summarize major achievements and paradigm-shifting discoveries made on the PG/GAG chemistry-biology axis, focusing on structural variability, structure-function relationships, metabolic, molecular, and epigenetic mechanisms underlying their synthesis.
Abstract: The extracellular matrix (ECM) constitutes a highly dynamic three-dimensional structural network comprised of macromolecules, such as proteoglycans/glycosaminoglycans (PGs/GAGs), collagens, laminins, fibronectin, elastin, other glycoproteins and proteinases In recent years, the field of PGs has expanded rapidly Due to their high structural complexity and heterogeneity, PGs mediate several homeostatic and pathological processes PGs consist of a protein core and one or more covalently attached GAG chains, which provide the protein cores with the ability to interact with several proteins The GAG building blocks of PGs significantly influence the chemical and functional properties of PGs The primary goal of this comprehensive review is to summarize major achievements and paradigm-shifting discoveries made on the PG/GAG chemistry-biology axis, focusing on structural variability, structure-function relationships, metabolic, molecular, and epigenetic mechanisms underlying their synthesis Recent insights related to exosome biogenesis, degradation, and cell signaling, their status as diagnostic tools and potential pharmacological targets in diseases as well as current applications in nanotechnology and biotechnology are addressed Moreover, issues related to docking studies, molecular modeling, GAG/PG interaction networks, and their integration are discussed

226 citations

Journal ArticleDOI
TL;DR: The spectrum of chemotherapy-induced peripheral neuropathy characteristics is discussed so as to highlight areas of future research to pursue on the topic and allow the registration and analysis of reliable data on the true characteristics of CIPN, eventually leading to potential preventive and therapeutic interventions.
Abstract: Commonly used chemotherapeutic agents in oncology/hematology practice, causing toxic peripheral neuropathy, include taxanes, platinum compounds, vinca alkaloids, proteasome inhibitors, and antiangiogenic/immunomodulatory agents. This review paper intends to put together and discuss the spectrum of chemotherapy-induced peripheral neuropathy (CIPN) characteristics so as to highlight areas of future research to pursue on the topic. Current knowledge shows that the pathogenesis of CIPN still remains elusive, mostly because there are several sites of involvement in the peripheral nervous system. In any case, it is acknowledged that the dorsal root ganglia of the primary sensory neurons are the most common neural targets of CIPN. Both the incidence and severity of CIPN are clinically under- and misreported, and it has been demonstrated that scoring CIPN with common toxicity scales is associated with significant inter-observer variability. Only a proportion of chemotherapy-treated patients develop treatment-emergent and persistent CIPN, and to date it has been impossible to predict high-and low-risk subjects even within groups who receive the same drug regimen. This issue has recently been investigated in the context of pharmacogenetic analyses, but these studies have not implemented a proper methodological approach and their results are inconsistent and not really clinically relevant. As such, a stringent approach has to be implemented to validate that information. Another open issue is that, at present, there is insufficient evidence to support the use of any of the already tested chemoprotective agents to prevent or limit CIPN. The results of comprehensive interventions, including clinical, neurophysiological, and pharmacogenetic approaches, are expected to produce a consistent advantage for both doctors and patients and thus allow the registration and analysis of reliable data on the true characteristics of CIPN, eventually leading to potential preventive and therapeutic interventions.

226 citations


Authors

Showing all 13529 results

NameH-indexPapersCitations
Thomas J. Meyer120107868519
Thoralf M. Sundt11275555708
Chihaya Adachi11290861403
Eleftherios P. Diamandis110106452654
Roland Siegwart105115451473
T. Geralis9980852221
Spyros N. Pandis9737751660
Michael Tsapatsis7737520051
George K. Karagiannidis7665324066
Eleftherios Mylonakis7544821413
Matthias Mörgelin7533218711
Constantinos C. Stoumpos7519427991
Raymond Alexanian7521121923
Mark J. Ablowitz7437427715
John Lygeros7366721508
Network Information
Related Institutions (5)
University of Padua
114.8K papers, 3.6M citations

92% related

University of Bologna
115.1K papers, 3.4M citations

92% related

University of Pisa
73.1K papers, 2.1M citations

92% related

National Research Council
76K papers, 2.4M citations

91% related

Sapienza University of Rome
155.4K papers, 4.3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202395
2022250
20211,738
20201,672
20191,469
20181,443