scispace - formally typeset
Search or ask a question
Institution

University of Pittsburgh

EducationPittsburgh, Pennsylvania, United States
About: University of Pittsburgh is a education organization based out in Pittsburgh, Pennsylvania, United States. It is known for research contribution in the topics: Population & Transplantation. The organization has 87042 authors who have published 201012 publications receiving 9656783 citations. The organization is also known as: Pitt & Western University of Pennsylvania.


Papers
More filters
Journal ArticleDOI
TL;DR: This Review integrates the available information on the role of DCs in the induction of tolerance, with a focus on transplantation.
Abstract: In recent years, there has been a shift from the perception of dendritic cells (DCs) solely as inducers of immune reactivity to the view that these cells are crucial regulators of immunity, which includes their ability to induce and maintain tolerance. Advances in our understanding of the phenotypical and functional plasticity of DCs, and in our ability to manipulate their development and maturation in vitro and in vivo, has provided a basis for the therapeutic harnessing of their inherent tolerogenicity. In this Review, we integrate the available information on the role of DCs in the induction of tolerance, with a focus on transplantation.

867 citations

Journal ArticleDOI
TL;DR: The issues surrounding the genome-wide association study approach are discussed with emphasis on the prospects and challenges relevant to the oral health research community.
Abstract: The genomic era of biomedical research has given rise to the genome-wide association study (GWAS) approach, which attempts to discover novel genes affecting an outcome by testing a large number (i.e., hundreds of thousands to millions) of genetic variants for association. This article discusses the issues surrounding the GWAS approach with emphasis on the prospects and challenges relevant to the oral health research community.

867 citations

Journal ArticleDOI
TL;DR: Assessment of the sensitivity of hepatocytes from rat, mouse, rhesus monkey and human livers to TRAIL indicates that there are species differences in sensitivity to TRAil, and that substantial liver toxicity might result if TRAIL were used in human cancer therapy.
Abstract: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been reported to induce apoptosis in various tumor cells but not in nontransformed, normal cells. Preclinical studies in mice and nonhuman primates have shown that administration of TRAIL can induce apoptosis in human tumors, but that no cytotoxicity to normal organs or tissues is found. The susceptibility of tumor cells to TRAIL and an apparent lack of activity in normal cells has lead to a proposal to use TRAIL in cancer therapy. Here, we assessed the sensitivity of hepatocytes from rat, mouse, rhesus monkey and human livers to TRAIL-induced apoptosis. TRAIL induced apoptosis in normal human hepatocytes in culture but not in hepatocytes isolated from the other species. Human hepatocytes showed characteristic features of apoptosis, including cytoplasmic shrinkage, the activation of caspases and DNA fragmentation. Apoptosis and cell death in human hepatocytes was massive and rapid, occurring in more than 60% of the cells exposed to TRAIL within 10 hours. These results indicate that there are species differences in sensitivity to TRAIL, and that substantial liver toxicity might result if TRAIL were used in human cancer therapy.

867 citations

Journal ArticleDOI
TL;DR: The SIRT1 deacetylase is established as a novel negative regulator of p53 function capable of modulating cellular senescence in mammalian cells upon overexpression of either PML or oncogenic Ras.
Abstract: The yeast Sir2 protein mediates chromatin silencing through an intrinsic NAD-dependent histone deacetylase activity. Sir2 is a conserved protein and was recently shown to regulate lifespan extension both in budding yeast and worms. Here, we show that SIRT1, the human Sir2 homolog, is recruited to the promyelocytic leukemia protein (PML) nuclear bodies of mammalian cells upon overexpression of either PML or oncogenic Ras (Ha-rasV12). SIRT1 binds and deacetylates p53, a component of PML nuclear bodies, and it can repress p53-mediated transactivation. Moreover, we show that SIRT1 and p53 co-localize in nuclear bodies upon PML upregulation. When overexpressed in primary mouse embryo fibroblasts (MEFs), SIRT1 antagonizes PML-induced acetylation of p53 and rescues PML-mediated premature cellular senescence. Taken together, our data establish the SIRT1 deacetylase as a novel negative regulator of p53 function capable of modulating cellular senescence.

866 citations

Journal ArticleDOI
TL;DR: This review describes historical milestones in the initial characterization of the KEAP1-NRF2 system and provides a comprehensive overview of the molecular mechanisms governing the functions ofKEAP1 and NRF2, as well as their roles in physiology and pathology.
Abstract: The Kelch-like ECH-associated protein 1-NF-E2-related factor 2 (KEAP1-NRF2) system forms the major node of cellular and organismal defense against oxidative and electrophilic stresses of both exoge...

866 citations


Authors

Showing all 87737 results

NameH-indexPapersCitations
JoAnn E. Manson2701819258509
Graham A. Colditz2611542256034
Yi Chen2174342293080
David J. Hunter2131836207050
David Miller2032573204840
Rakesh K. Jain2001467177727
Lewis C. Cantley196748169037
Dennis W. Dickson1911243148488
Terrie E. Moffitt182594150609
Dennis S. Charney179802122408
Ronald C. Petersen1781091153067
David L. Kaplan1771944146082
Jasvinder A. Singh1762382223370
Richard K. Wilson173463260000
Deborah J. Cook173907148928
Network Information
Related Institutions (5)
University of Pennsylvania
257.6K papers, 14.1M citations

98% related

Johns Hopkins University
249.2K papers, 14M citations

97% related

Yale University
220.6K papers, 12.8M citations

97% related

Columbia University
224K papers, 12.8M citations

97% related

University of Washington
305.5K papers, 17.7M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023260
20221,089
202111,152
202010,408
20199,333
20188,577