scispace - formally typeset
Search or ask a question

Showing papers by "University of Portsmouth published in 2021"


Journal ArticleDOI
Carole Escartin1, Elena Galea2, Andras Lakatos3, James P. O'Callaghan4, Gabor C. Petzold5, Gabor C. Petzold6, Alberto Serrano-Pozo7, Christian Steinhäuser6, Andrea Volterra8, Giorgio Carmignoto9, Giorgio Carmignoto10, Amit Agarwal11, Nicola J. Allen12, Alfonso Araque13, Luis Barbeito14, Ari Barzilai15, Dwight E. Bergles16, Gilles Bonvento1, Arthur M. Butt17, Wei Ting Chen18, Martine Cohen-Salmon19, Colm Cunningham20, Benjamin Deneen21, Bart De Strooper18, Bart De Strooper22, Blanca Diaz-Castro23, Cinthia Farina, Marc R. Freeman24, Vittorio Gallo25, James E. Goldman26, Steven A. Goldman27, Steven A. Goldman28, Magdalena Götz29, Antonia Gutierrez30, Philip G. Haydon31, Dieter Henrik Heiland32, Elly M. Hol33, Matthew Holt18, Masamitsu Iino34, Ksenia V. Kastanenka7, Helmut Kettenmann35, Baljit S. Khakh36, Schuichi Koizumi37, C. Justin Lee, Shane A. Liddelow38, Brian A. MacVicar39, Pierre J. Magistretti40, Pierre J. Magistretti8, Albee Messing41, Anusha Mishra24, Anna V. Molofsky42, Keith K. Murai43, Christopher M. Norris44, Seiji Okada45, Stéphane H. R. Oliet46, João Filipe Oliveira47, João Filipe Oliveira48, Aude Panatier46, Vladimir Parpura49, Marcela Pekna50, Milos Pekny50, Luc Pellerin51, Gertrudis Perea52, Beatriz G. Pérez-Nievas53, Frank W. Pfrieger54, Kira E. Poskanzer42, Francisco J. Quintana7, Richard M. Ransohoff, Miriam Riquelme-Perez1, Stefanie Robel55, Christine R. Rose56, Jeffrey D. Rothstein16, Nathalie Rouach19, David H. Rowitch3, Alexey Semyanov57, Alexey Semyanov58, Swetlana Sirko29, Harald Sontheimer55, Raymond A. Swanson42, Javier Vitorica59, Ina B. Wanner36, Levi B. Wood60, Jia Qian Wu61, Binhai Zheng62, Eduardo R. Zimmer63, Robert Zorec64, Michael V. Sofroniew36, Alexei Verkhratsky65, Alexei Verkhratsky66 
Université Paris-Saclay1, Autonomous University of Barcelona2, University of Cambridge3, National Institute for Occupational Safety and Health4, German Center for Neurodegenerative Diseases5, University of Bonn6, Harvard University7, University of Lausanne8, University of Padua9, National Research Council10, Heidelberg University11, Salk Institute for Biological Studies12, University of Minnesota13, Pasteur Institute14, Tel Aviv University15, Johns Hopkins University16, University of Portsmouth17, Katholieke Universiteit Leuven18, PSL Research University19, Trinity College, Dublin20, Baylor College of Medicine21, University College London22, University of Edinburgh23, Oregon Health & Science University24, National Institutes of Health25, Columbia University26, University of Copenhagen27, University of Rochester28, Ludwig Maximilian University of Munich29, University of Málaga30, Tufts University31, University of Freiburg32, Utrecht University33, Nihon University34, Max Delbrück Center for Molecular Medicine35, University of California, Los Angeles36, University of Yamanashi37, New York University38, University of British Columbia39, King Abdullah University of Science and Technology40, University of Wisconsin-Madison41, University of California, San Francisco42, McGill University43, University of Kentucky44, Kyushu University45, University of Bordeaux46, University of Minho47, Polytechnic Institute of Cávado and Ave48, University of Alabama at Birmingham49, University of Gothenburg50, University of Poitiers51, Cajal Institute52, King's College London53, University of Strasbourg54, Virginia Tech55, University of Düsseldorf56, Russian Academy of Sciences57, I.M. Sechenov First Moscow State Medical University58, University of Seville59, Georgia Institute of Technology60, University of Texas Health Science Center at Houston61, University of California, San Diego62, Universidade Federal do Rio Grande do Sul63, University of Ljubljana64, Ikerbasque65, University of Manchester66
TL;DR: In this article, the authors point out the shortcomings of binary divisions of reactive astrocytes into good-vs-bad, neurotoxic vs-neuroprotective or A1-vs.A2.
Abstract: Reactive astrocytes are astrocytes undergoing morphological, molecular, and functional remodeling in response to injury, disease, or infection of the CNS. Although this remodeling was first described over a century ago, uncertainties and controversies remain regarding the contribution of reactive astrocytes to CNS diseases, repair, and aging. It is also unclear whether fixed categories of reactive astrocytes exist and, if so, how to identify them. We point out the shortcomings of binary divisions of reactive astrocytes into good-vs-bad, neurotoxic-vs-neuroprotective or A1-vs-A2. We advocate, instead, that research on reactive astrocytes include assessment of multiple molecular and functional parameters-preferably in vivo-plus multivariate statistics and determination of impact on pathological hallmarks in relevant models. These guidelines may spur the discovery of astrocyte-based biomarkers as well as astrocyte-targeting therapies that abrogate detrimental actions of reactive astrocytes, potentiate their neuro- and glioprotective actions, and restore or augment their homeostatic, modulatory, and defensive functions.

797 citations


Journal ArticleDOI
TL;DR: An overview of the state-of-the-art attention models proposed in recent years is given and a unified model that is suitable for most attention structures is defined.

620 citations


Journal ArticleDOI
Shadab Alam1, Marie Aubert, Santiago Avila2, Christophe Balland3, Julian E. Bautista4, Matthew A. Bershady5, Matthew A. Bershady6, Dmitry Bizyaev7, Dmitry Bizyaev8, Michael R. Blanton9, Adam S. Bolton10, Jo Bovy11, Jonathan Brinkmann7, Joel R. Brownstein10, Etienne Burtin12, Solène Chabanier12, Michael J. Chapman13, Peter Doohyun Choi14, Chia-Hsun Chuang15, Johan Comparat16, M. C. Cousinou, Andrei Cuceu17, Kyle S. Dawson10, Sylvain de la Torre, Arnaud de Mattia12, Victoria de Sainte Agathe3, Hélion du Mas des Bourboux10, Stephanie Escoffier, Thomas Etourneau12, James Farr17, Andreu Font-Ribera17, Peter M. Frinchaboy18, S. Fromenteau19, Héctor Gil-Marín20, Jean Marc Le Goff12, Alma X. Gonzalez-Morales21, Alma X. Gonzalez-Morales22, Violeta Gonzalez-Perez23, Violeta Gonzalez-Perez4, Kathleen Grabowski7, Julien Guy24, Adam J. Hawken, Jiamin Hou16, Hui Kong25, James C. Parker7, Mark A. Klaene7, Jean-Paul Kneib26, Sicheng Lin9, Daniel Long7, Brad W. Lyke27, Axel de la Macorra19, Paul Martini25, Karen L. Masters28, Faizan G. Mohammad13, Jeongin Moon14, Eva Maria Mueller29, Andrea Muñoz-Gutiérrez19, Adam D. Myers27, Seshadri Nadathur4, Richard Neveux12, Jeffrey A. Newman30, P. Noterdaeme3, Audrey Oravetz7, Daniel Oravetz7, Nathalie Palanque-Delabrouille12, Kaike Pan7, Romain Paviot, Will J. Percival31, Will J. Percival13, Ignasi Pérez-Ràfols3, Patrick Petitjean3, Matthew M. Pieri, Abhishek Prakash32, Anand Raichoor26, Corentin Ravoux12, Mehdi Rezaie33, J. Rich12, Ashley J. Ross25, Graziano Rossi14, Rossana Ruggeri34, Rossana Ruggeri4, V. Ruhlmann-Kleider12, Ariel G. Sánchez16, F. Javier Sánchez35, José R. Sánchez-Gallego36, Conor Sayres36, Donald P. Schneider, Hee-Jong Seo33, Arman Shafieloo37, Anže Slosar38, Alex Smith12, Julianna Stermer3, Amélie Tamone26, Jeremy L. Tinker9, Rita Tojeiro39, Mariana Vargas-Magaña19, Andrei Variu26, Yuting Wang, Benjamin A. Weaver, Anne-Marie Weijmans39, C. Yeche12, Pauline Zarrouk40, Pauline Zarrouk12, Cheng Zhao26, Gong-Bo Zhao, Zheng Zheng10 
TL;DR: In this article, the authors present the cosmological implications from final measurements of clustering using galaxies, quasars, and Lyα forests from the completed SDSS lineage of experiments in large-scale structure.
Abstract: We present the cosmological implications from final measurements of clustering using galaxies, quasars, and Lyα forests from the completed Sloan Digital Sky Survey (SDSS) lineage of experiments in large-scale structure. These experiments, composed of data from SDSS, SDSS-II, BOSS, and eBOSS, offer independent measurements of baryon acoustic oscillation (BAO) measurements of angular-diameter distances and Hubble distances relative to the sound horizon, rd, from eight different samples and six measurements of the growth rate parameter, fσ8, from redshift-space distortions (RSD). This composite sample is the most constraining of its kind and allows us to perform a comprehensive assessment of the cosmological model after two decades of dedicated spectroscopic observation. We show that the BAO data alone are able to rule out dark-energy-free models at more than eight standard deviations in an extension to the flat, ΛCDM model that allows for curvature. When combined with Planck Cosmic Microwave Background (CMB) measurements of temperature and polarization, under the same model, the BAO data provide nearly an order of magnitude improvement on curvature constraints relative to primary CMB constraints alone. Independent of distance measurements, the SDSS RSD data complement weak lensing measurements from the Dark Energy Survey (DES) in demonstrating a preference for a flat ΛCDM cosmological model when combined with Planck measurements. The combined BAO and RSD measurements indicate σ8=0.85±0.03, implying a growth rate that is consistent with predictions from Planck temperature and polarization data and with General Relativity. When combining the results of SDSS BAO and RSD, Planck, Pantheon Type Ia supernovae (SNe Ia), and DES weak lensing and clustering measurements, all multiple-parameter extensions remain consistent with a ΛCDM model. Regardless of cosmological model, the precision on each of the three parameters, ωΛ, H0, and σ8, remains at roughly 1%, showing changes of less than 0.6% in the central values between models. In a model that allows for free curvature and a time-evolving equation of state for dark energy, the combined samples produce a constraint ωk=-0.0022±0.0022. The dark energy constraints lead to w0=-0.909±0.081 and wa=-0.49-0.30+0.35, corresponding to an equation of state of wp=-1.018±0.032 at a pivot redshift zp=0.29 and a Dark Energy Task Force Figure of Merit of 94. The inverse distance ladder measurement under this model yields H0=68.18±0.79 km s-1 Mpc-1, remaining in tension with several direct determination methods; the BAO data allow Hubble constant estimates that are robust against the assumption of the cosmological model. In addition, the BAO data allow estimates of H0 that are independent of the CMB data, with similar central values and precision under a ΛCDM model. Our most constraining combination of data gives the upper limit on the sum of neutrino masses at mν<0.115 eV (95% confidence). Finally, we consider the improvements in cosmology constraints over the last decade by comparing our results to a sample representative of the period 2000-2010. We compute the relative gain across the five dimensions spanned by w, ωk, mν, H0, and σ8 and find that the SDSS BAO and RSD data reduce the total posterior volume by a factor of 40 relative to the previous generation. Adding again the Planck, DES, and Pantheon SN Ia samples leads to an overall contraction in the five-dimensional posterior volume of 3 orders of magnitude.

575 citations


Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1428 moreInstitutions (155)
TL;DR: In this article, the population of 47 compact binary mergers detected with a false-alarm rate of 0.614 were dynamically assembled, and the authors found that the BBH rate likely increases with redshift, but not faster than the star formation rate.
Abstract: We report on the population of 47 compact binary mergers detected with a false-alarm rate of 0.01 are dynamically assembled. Third, we estimate merger rates, finding RBBH = 23.9-+8.614.3 Gpc-3 yr-1 for BBHs and RBNS = 320-+240490 Gpc-3 yr-1 for binary neutron stars. We find that the BBH rate likely increases with redshift (85% credibility) but not faster than the star formation rate (86% credibility). Additionally, we examine recent exceptional events in the context of our population models, finding that the asymmetric masses of GW190412 and the high component masses of GW190521 are consistent with our models, but the low secondary mass of GW190814 makes it an outlier.

468 citations


Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1692 moreInstitutions (195)
TL;DR: In this article, the authors reported the observation of gravitational waves from two compact binary coalescences in LIGO's and Virgo's third observing run with properties consistent with neutron star-black hole (NSBH) binaries.
Abstract: We report the observation of gravitational waves from two compact binary coalescences in LIGO’s and Virgo’s third observing run with properties consistent with neutron star–black hole (NSBH) binaries. The two events are named GW200105_162426 and GW200115_042309, abbreviated as GW200105 and GW200115; the first was observed by LIGO Livingston and Virgo and the second by all three LIGO–Virgo detectors. The source of GW200105 has component masses 8.9−1.5+1.2 and 1.9−0.2+0.3M⊙ , whereas the source of GW200115 has component masses 5.7−2.1+1.8 and 1.5−0.3+0.7M⊙ (all measurements quoted at the 90% credible level). The probability that the secondary’s mass is below the maximal mass of a neutron star is 89%–96% and 87%–98%, respectively, for GW200105 and GW200115, with the ranges arising from different astrophysical assumptions. The source luminosity distances are 280−110+110 and 300−100+150Mpc , respectively. The magnitude of the primary spin of GW200105 is less than 0.23 at the 90% credible level, and its orientation is unconstrained. For GW200115, the primary spin has a negative spin projection onto the orbital angular momentum at 88% probability. We are unable to constrain the spin or tidal deformation of the secondary component for either event. We infer an NSBH merger rate density of 45−33+75Gpc−3yr−1 when assuming that GW200105 and GW200115 are representative of the NSBH population or 130−69+112Gpc−3yr−1 under the assumption of a broader distribution of component masses.

374 citations


Journal ArticleDOI
TL;DR: In this article, the authors evaluate the consistency of the LIGO-Virgo data with predictions from the theory and find no evidence for new physics beyond general relativity, for black hole mimickers, or for any unaccounted systematics.
Abstract: Gravitational waves enable tests of general relativity in the highly dynamical and strong-field regime. Using events detected by LIGO-Virgo up to 1 October 2019, we evaluate the consistency of the data with predictions from the theory. We first establish that residuals from the best-fit waveform are consistent with detector noise, and that the low- and high-frequency parts of the signals are in agreement. We then consider parametrized modifications to the waveform by varying post-Newtonian and phenomenological coefficients, improving past constraints by factors of ∼2; we also find consistency with Kerr black holes when we specifically target signatures of the spin-induced quadrupole moment. Looking for gravitational-wave dispersion, we tighten constraints on Lorentz-violating coefficients by a factor of ∼2.6 and bound the mass of the graviton to mg≤1.76×10-23 eV/c2 with 90% credibility. We also analyze the properties of the merger remnants by measuring ringdown frequencies and damping times, constraining fractional deviations away from the Kerr frequency to δf^220=0.03-0.35+0.38 for the fundamental quadrupolar mode, and δf^221=0.04-0.32+0.27 for the first overtone; additionally, we find no evidence for postmerger echoes. Finally, we determine that our data are consistent with tensorial polarizations through a template-independent method. When possible, we assess the validity of general relativity based on collections of events analyzed jointly. We find no evidence for new physics beyond general relativity, for black hole mimickers, or for any unaccounted systematics.

368 citations


Journal ArticleDOI
Eleonora Di Valentino1, Luis A. Anchordoqui2, Özgür Akarsu3, Yacine Ali-Haïmoud4, Luca Amendola5, Nikki Arendse6, Marika Asgari7, Mario Ballardini8, Spyros Basilakos9, Elia S. Battistelli10, Micol Benetti11, Simon Birrer12, François R. Bouchet13, Marco Bruni14, Erminia Calabrese15, David Camarena16, Salvatore Capozziello11, Angela Chen17, Jens Chluba1, Anton Chudaykin, Eoin Ó Colgáin18, Francis-Yan Cyr-Racine19, Paolo de Bernardis10, Javier de Cruz Pérez20, Jacques Delabrouille21, Jo Dunkley22, Celia Escamilla-Rivera23, Agnès Ferté24, Fabio Finelli25, Wendy L. Freedman26, Noemi Frusciante, Elena Giusarma27, Adrià Gómez-Valent5, Julien Guy28, Will Handley29, Ian Harrison1, Luke Hart1, Alan Heavens30, Hendrik Hildebrandt31, Daniel E. Holz26, Dragan Huterer17, Mikhail M. Ivanov4, Shahab Joudaki32, Shahab Joudaki33, Marc Kamionkowski34, Tanvi Karwal35, Lloyd Knox36, Suresh Kumar37, Luca Lamagna10, Julien Lesgourgues38, Matteo Lucca39, Valerio Marra16, Silvia Masi10, Sabino Matarrese40, Arindam Mazumdar41, Alessandro Melchiorri10, Olga Mena42, Laura Mersini-Houghton43, Vivian Miranda44, Cristian Moreno-Pulido20, David F. Mota45, J. Muir12, Ankan Mukherjee46, Florian Niedermann47, Alessio Notari20, Rafael C. Nunes48, Francesco Pace1, Andronikos Paliathanasis, Antonella Palmese49, Supriya Pan50, Daniela Paoletti25, Valeria Pettorino51, F. Piacentini10, Vivian Poulin52, Marco Raveri35, Adam G. Riess34, Vincenzo Salzano53, Emmanuel N. Saridakis, Anjan A. Sen46, Arman Shafieloo54, Anowar J. Shajib55, Joseph Silk34, Joseph Silk56, Alessandra Silvestri57, Martin S. Sloth47, Tristan L. Smith58, Joan Solà Peracaula20, Carsten van de Bruck59, Licia Verde20, Luca Visinelli60, Benjamin D. Wandelt56, Deng Wang, Jian-Min Wang, Anil Kumar Yadav61, Weiqiang Yang62 
University of Manchester1, City University of New York2, Istanbul Technical University3, New York University4, Heidelberg University5, Niels Bohr Institute6, University of Edinburgh7, University of Bologna8, Academy of Athens9, Sapienza University of Rome10, University of Naples Federico II11, Stanford University12, Institut d'Astrophysique de Paris13, University of Portsmouth14, Cardiff University15, Universidade Federal do Espírito Santo16, University of Michigan17, Asia Pacific Center for Theoretical Physics18, University of New Mexico19, University of Barcelona20, University of St. Thomas (Minnesota)21, Princeton University22, National Autonomous University of Mexico23, California Institute of Technology24, INAF25, University of Chicago26, Michigan Technological University27, Lawrence Berkeley National Laboratory28, University of Cambridge29, Imperial College London30, Ruhr University Bochum31, University of Waterloo32, University of Oxford33, Johns Hopkins University34, University of Pennsylvania35, University of California, Davis36, Birla Institute of Technology and Science37, RWTH Aachen University38, Université libre de Bruxelles39, University of Padua40, Indian Institute of Technology Kharagpur41, Spanish National Research Council42, University of North Carolina at Chapel Hill43, University of Arizona44, University of Oslo45, Jamia Millia Islamia46, University of Southern Denmark47, National Institute for Space Research48, Fermilab49, Presidency University, Kolkata50, Université Paris-Saclay51, University of Montpellier52, University of Szczecin53, Korea Astronomy and Space Science Institute54, University of California, Los Angeles55, University of Paris56, Leiden University57, Swarthmore College58, University of Sheffield59, University of Amsterdam60, United College, Winnipeg61, Liaoning Normal University62
TL;DR: In this article, the authors focus on the 4.4σ tension between the Planck estimate of the Hubble constant H0 and the SH0ES collaboration measurements and discuss how the next decade's experiments will be crucial.

322 citations


Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1335 moreInstitutions (144)
TL;DR: The data recorded by these instruments during their first and second observing runs are described, including the gravitational-wave strain arrays, released as time series sampled at 16384 Hz.

320 citations


Journal ArticleDOI
01 Jul 2021
TL;DR: In this article, the challenges and opportunities associated with the catalytic transformation of waste plastics, looking at both chemical and biological approaches to transforming such spent materials into a resource, are explored and compared.
Abstract: Plastics pollution is causing an environmental crisis, prompting the development of new approaches for recycling, and upcycling. Here, we review challenges and opportunities in chemical and biological catalysis for plastics deconstruction, recycling, and upcycling. We stress the need for rigorous characterization and use of widely available substrates, such that catalyst performance can be compared across studies. Where appropriate, we draw parallels between catalysis on biomass and plastics, as both substrates are low-value, solid, recalcitrant polymers. Innovations in catalyst design and reaction engineering are needed to overcome kinetic and thermodynamic limitations of plastics deconstruction. Either chemical and biological catalysts will need to act interfacially, where catalysts function at a solid surface, or polymers will need to be solubilized or processed to smaller intermediates to facilitate improved catalyst–substrate interaction. Overall, developing catalyst-driven technologies for plastics deconstruction and upcycling is critical to incentivize improved plastics reclamation and reduce the severe global burden of plastic waste. Plastics are invaluable materials for modern society, although they result in the generation of large amounts of litter at the end of their life cycle. This Review explores the challenges and opportunities associated with the catalytic transformation of waste plastics, looking at both chemical and biological approaches to transforming such spent materials into a resource.

243 citations


Journal ArticleDOI
Eleonora Di Valentino1, Luis A. Anchordoqui2, Özgür Akarsu3, Yacine Ali-Haïmoud4, Luca Amendola5, Nikki Arendse6, Marika Asgari7, Mario Ballardini8, Spyros Basilakos9, Elia S. Battistelli10, Micol Benetti11, Simon Birrer12, François R. Bouchet13, Marco Bruni14, Erminia Calabrese15, David Camarena16, Salvatore Capozziello11, Angela Chen17, Jens Chluba1, Anton Chudaykin, Eoin Ó Colgáin18, Francis-Yan Cyr-Racine19, Paolo de Bernardis10, Javier de Cruz Pérez20, Jacques Delabrouille21, Jo Dunkley22, Celia Escamilla-Rivera23, Agnès Ferté24, Fabio Finelli25, Wendy L. Freedman26, Noemi Frusciante, Elena Giusarma27, Adrià Gómez-Valent5, Will Handley28, Ian Harrison1, Luke Hart1, Alan Heavens29, Hendrik Hildebrandt30, Daniel E. Holz26, Dragan Huterer17, Mikhail M. Ivanov4, Shahab Joudaki31, Marc Kamionkowski32, Tanvi Karwal33, Lloyd Knox34, Suresh Kumar35, Luca Lamagna10, Julien Lesgourgues36, Matteo Lucca37, Valerio Marra16, Silvia Masi10, Sabino Matarrese38, Arindam Mazumdar39, Alessandro Melchiorri10, Olga Mena40, Laura Mersini-Houghton41, Vivian Miranda42, Cristian Moreno-Pulido20, David F. Mota43, J. Muir12, Ankan Mukherjee44, Florian Niedermann, Alessio Notari20, Rafael C. Nunes45, Francesco Pace1, Andronikos Paliathanasis, Antonella Palmese46, Supriya Pan47, Daniela Paoletti25, Valeria Pettorino48, F. Piacentini10, Vivian Poulin49, Marco Raveri33, Adam G. Riess32, Vincenzo Salzano50, Emmanuel N. Saridakis9, Anjan A. Sen44, Arman Shafieloo51, Anowar J. Shajib52, Joseph Silk32, Joseph Silk21, Alessandra Silvestri53, Martin S. Sloth54, Tristan L. Smith55, Joan Solà Peracaula20, Carsten van de Bruck56, Licia Verde20, Luca Visinelli57, Benjamin D. Wandelt21, Deng Wang, Jian-Min Wang, Anil Kumar Yadav58, Weiqiang Yang59 
University of Manchester1, City University of New York2, Istanbul Technical University3, New York University4, Heidelberg University5, Niels Bohr Institute6, University of Edinburgh7, University of Bologna8, Academy of Athens9, Sapienza University of Rome10, University of Naples Federico II11, Stanford University12, Institut d'Astrophysique de Paris13, University of Portsmouth14, Cardiff University15, Universidade Federal do Espírito Santo16, University of Michigan17, Asia Pacific Center for Theoretical Physics18, University of New Mexico19, University of Barcelona20, Centre national de la recherche scientifique21, Princeton University22, National Autonomous University of Mexico23, Jet Propulsion Laboratory24, INAF25, University of Chicago26, Michigan Technological University27, University of Cambridge28, Imperial College London29, Ruhr University Bochum30, University of Waterloo31, Johns Hopkins University32, University of Pennsylvania33, University of California, Davis34, Birla Institute of Technology and Science35, RWTH Aachen University36, Université libre de Bruxelles37, University of Padua38, Indian Institute of Technology Kharagpur39, Spanish National Research Council40, University of North Carolina at Chapel Hill41, University of Arizona42, University of Oslo43, Jamia Millia Islamia44, National Institute for Space Research45, Fermilab46, Presidency University, Kolkata47, Université Paris-Saclay48, University of Montpellier49, University of Szczecin50, Korea Astronomy and Space Science Institute51, University of California, Los Angeles52, Leiden University53, University of Southern Denmark54, Swarthmore College55, University of Sheffield56, University of Amsterdam57, United College, Winnipeg58, Liaoning Normal University59
TL;DR: In this article, the authors focus on the tension between Planck data and weak lensing measurements and redshift surveys, and discuss the importance of trying to fit multiple cosmological datasets with complete physical models, rather than fitting individual datasets with a few handpicked theoretical parameters.

181 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated whether lending institutions reward firms for their environmental, social and governance performance and disclosure in terms of lowering their cost of debt capital, and they found that firms with stronger ESG performance have a lower cost-of-debt capital.

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3  +1273 moreInstitutions (140)
TL;DR: In this article, the first and second observing runs of the Advanced LIGO and Virgo detector network were used to obtain the first standard-siren measurement of the Hubble constant (H 0).
Abstract: This paper presents the gravitational-wave measurement of the Hubble constant (H 0) using the detections from the first and second observing runs of the Advanced LIGO and Virgo detector network. The presence of the transient electromagnetic counterpart of the binary neutron star GW170817 led to the first standard-siren measurement of H 0. Here we additionally use binary black hole detections in conjunction with galaxy catalogs and report a joint measurement. Our updated measurement is H 0 = km s−1 Mpc−1 (68.3% of the highest density posterior interval with a flat-in-log prior) which is an improvement by a factor of 1.04 (about 4%) over the GW170817-only value of km s−1 Mpc−1. A significant additional contribution currently comes from GW170814, a loud and well-localized detection from a part of the sky thoroughly covered by the Dark Energy Survey. With numerous detections anticipated over the upcoming years, an exhaustive understanding of other systematic effects are also going to become increasingly important. These results establish the path to cosmology using gravitational-wave observations with and without transient electromagnetic counterparts.

Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1678 moreInstitutions (193)
TL;DR: In this article, the authors report results of a search for an isotropic gravitational-wave background (GWB) using data from Advanced LIGO's and Advanced Virgo's third observing run (O3) combined with upper limits from the earlier O1 and O2 runs.
Abstract: We report results of a search for an isotropic gravitational-wave background (GWB) using data from Advanced LIGO’s and Advanced Virgo’s third observing run (O3) combined with upper limits from the earlier O1 and O2 runs. Unlike in previous observing runs in the advanced detector era, we include Virgo in the search for the GWB. The results of the search are consistent with uncorrelated noise, and therefore we place upper limits on the strength of the GWB. We find that the dimensionless energy density Ω GW ≤ 5.8 × 10 − 9 at the 95% credible level for a flat (frequency-independent) GWB, using a prior which is uniform in the log of the strength of the GWB, with 99% of the sensitivity coming from the band 20–76.6 Hz; Ω GW ( f ) ≤ 3.4 × 10 − 9 at 25 Hz for a power-law GWB with a spectral index of 2 / 3 (consistent with expectations for compact binary coalescences), in the band 20–90.6 Hz; and Ω GW ( f ) ≤ 3.9 × 10 − 10 at 25 Hz for a spectral index of 3, in the band 20–291.6 Hz. These upper limits improve over our previous results by a factor of 6.0 for a flat GWB, 8.8 for a spectral index of 2 / 3 , and 13.1 for a spectral index of 3. We also search for a GWB arising from scalar and vector modes, which are predicted by alternative theories of gravity; we do not find evidence of these, and place upper limits on the strength of GWBs with these polarizations. We demonstrate that there is no evidence of correlated noise of magnetic origin by performing a Bayesian analysis that allows for the presence of both a GWB and an effective magnetic background arising from geophysical Schumann resonances. We compare our upper limits to a fiducial model for the GWB from the merger of compact binaries, updating the model to use the most recent data-driven population inference from the systems detected during O3a. Finally, we combine our results with observations of individual mergers and show that, at design sensitivity, this joint approach may yield stronger constraints on the merger rate of binary black holes at z ≳ 2 than can be achieved with individually resolved mergers alone.


Journal ArticleDOI
TL;DR: In this article, the authors compared trends, mechanisms and consequences of both AA and TA over the two Poles and found that AA over the AP is warming at a rate almost four times than the global means and twice as fast over the TP.

Journal ArticleDOI
D. Davis1, J. S. Areeda2, Beverly K. Berger3, Robert Bruntz4  +300 moreInstitutions (55)
TL;DR: The characterization of the Advanced LIGO detectors in the second and third observing runs has increased the sensitivity of the instruments, allowing for a higher number of detectable gravitational-wave signals, and provided confirmation of all observed gravitational wave events as discussed by the authors.
Abstract: The characterization of the Advanced LIGO detectors in the second and third observing runs has increased the sensitivity of the instruments, allowing for a higher number of detectable gravitational-wave signals, and provided confirmation of all observed gravitational-wave events. In this work, we present the methods used to characterize the LIGO detectors and curate the publicly available datasets, including the LIGO strain data and data quality products. We describe the essential role of these datasets in LIGO–Virgo Collaboration analyses of gravitational-waves from both transient and persistent sources and include details on the provenance of these datasets in order to support analyses of LIGO data by the broader community. Finally, we explain anticipated changes in the role of detector characterization and current efforts to prepare for the high rate of gravitational-wave alerts and events in future observing runs.

Journal ArticleDOI
15 Sep 2021-Joule
TL;DR: In this paper, the authors present process modeling, techno-economic, life-cycle, and socioeconomic impact analyses for an enzymatic PET depolymerization-based recycling process, which they compare with virgin TPA manufacturing.

Journal ArticleDOI
TL;DR: In this article, a two-stage design is adopted: the first stage adopts an exploratory strategy to identify consumption-related themes using netnography, while the second stage explores these themes further to gain a deeper insight through 13 semi-structured interviews.
Abstract: This research draws on protection motivation theory, temporal construal theory, and self-determination theory to understand consumption practices during a pandemic crisis by looking at the narratives of British consumers during the COVID-19 crisis. A two-stage design is adopted: the first stage adopts an exploratory strategy to identify consumption-related themes using netnography, while the second stage explores these themes further to gain a deeper insight through 13 semi-structured interviews. Three themes emerge relating to different aspects of consumption practices. These themes are found to link to the self-control research area and include consumers' self-control changing their shopping behaviour, having less self-control over unhealthy snack consumption and having less self-control concerning alcohol. These lead to changes in other consumption practices, including store format and type of shopping. Different initiatives are discussed to help retailers retain their new lockdown customers to help manufacturers provide healthier options and to help weight management businesses and the National Health Service reduce unhealthy consumption habits.

Journal ArticleDOI
Paul Elliott, D Haw1, Haowei Wang1, Oliver Eales1  +589 moreInstitutions (17)
02 Nov 2021-Science
TL;DR: In this article, the authors assessed RT-PCR swab-positivity in the REAL-time Assessment of Community Transmissibility (RACT) in many countries associated with the Delta variant.
Abstract: SARS-CoV-2 infections were rising during early summer 2021 in many countries associated with the Delta variant. We assessed RT-PCR swab-positivity in the REal-time Assessment of Community Transmiss...

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors studied the impact of green credit guidelines on corporate green technology innovation and its mechanism in China's 2825 listed companies from 2007 to 2018, collecting the panel data of China's largest listed companies and constructing a difference-in-difference model.
Abstract: Green technology innovation is regarded as an important means to achieve sustainable development Countries all over the world mainly implement green technology innovation policies from the aspects of environmental regulation and financing constraints The effect of financing constraint policy on enterprise green technology innovation remains to be investigated Based on the event of “green credit guidelines” issued by China Banking Regulatory Commission in 2012, this paper collects the panel data of China’s 2825 listed companies from 2007 to 2018, constructs a difference-in-difference model, and studies the impact of green credit guidelines on corporate green technology innovation and its mechanism The empirical results show: First, green credit guidelines can promote corporate green technology innovation on the whole Second, the mechanism of green credit on enterprise green technology innovation is identified Green credit guidelines mainly limited green technology innovation through reducing debt financing, rather than through financing constraints Third, the impact of green credit guidelines on green technology innovation is heterogeneous Green credit guidelines have a significant effect on the green technology innovation of state-owned and large enterprises, but have no effect on the green technology innovation of non-state-owned and small ones

Journal ArticleDOI
TL;DR: In this article, a comprehensive review on deep multi-view learning from the following two perspectives: MVL methods in deep learning scope and deep MVL extensions of traditional methods is presented, and the authors attempt to identify some open challenges to inform future research directions.

Journal ArticleDOI
T. M. C. Abbott, Monika Adamów1, Michel Aguena2, S. Allam3  +146 moreInstitutions (45)
TL;DR: DES DR2 as mentioned in this paper consists of reduced single-epoch and co-addicted images, a source catalog derived from coadded images, and associated data products assembled from 6 yr of DES science operations.
Abstract: We present the second public data release of the Dark Energy Survey, DES DR2, based on optical/near-infrared imaging by the Dark Energy Camera mounted on the 4 m Blanco telescope at Cerro Tololo Inter-American Observatory in Chile. DES DR2 consists of reduced single-epoch and coadded images, a source catalog derived from coadded images, and associated data products assembled from 6 yr of DES science operations. This release includes data from the DES wide-area survey covering similar to 5000 deg(2) of the southern Galactic cap in five broad photometric bands, grizY. DES DR2 has a median delivered point-spread function FWHM of g = 1.11 '', r = 0.95 '', i = 0.88 '', z = 0.83 '', and Y = 0.'' 90, photometric uniformity with a standard deviation of < 3 mmag with respect to Gaia DR2 G band, a photometric accuracy of similar to 11 mmag, and a median internal astrometric precision of similar to 27 mas. The median coadded catalog depth for a 1.'' 95 diameter aperture at signal-to-noise ratio = 10 is g = 24.7, r = 24.4, i = 23.8, z = 23.1, and Y = 21.7 mag. DES DR2 includes similar to 691 million distinct astronomical objects detected in 10,169 coadded image tiles of size 0.534 deg(2) produced from 76,217 single-epoch images. After a basic quality selection, benchmark galaxy and stellar samples contain 543 million and 145 million objects, respectively. These data are accessible through several interfaces, including interactive image visualization tools, web-based query clients, image cutout servers, and Jupyter notebooks. DES DR2 constitutes the largest photometric data set to date at the achieved depth and photometric precision.

Journal ArticleDOI
TL;DR: The finding that NEWS or NEWS2 performance was good and similar in all five cohorts suggests that amendments to NEWS or News2, such as the addition of new covariates or the need to change the weighting of existing parameters, are unnecessary when evaluating patients with COVID-19.

Journal ArticleDOI
TL;DR: In this article, the authors investigated how COVID-19 is impacting different accommodation types, and whether travellers' choices regarding accommodation type are affected by the need for physical distance, and they found that full flats are preferred to hotel rooms.

Journal ArticleDOI
TL;DR: In this paper, a workshop with international representatives from the fields of behavioral ecology, ecotoxicology, regulatory toxicology, neurotoxicology and risk assessment resulted in the formation of consensus perspectives and recommendations which promise to serve as a roadmap to advance interfaces among the basic and translational sciences, and regulatory practices.
Abstract: For decades, we have known that chemicals affect human and wildlife behavior. Moreover, due to recent technological and computational advances, scientists are now increasingly aware that a wide variety of contaminants and other environmental stressors adversely affect organismal behavior and subsequent ecological outcomes in terrestrial and aquatic ecosystems. There is also a groundswell of concern that regulatory ecotoxicology does not adequately consider behavior, primarily due to a lack of standardized toxicity methods. This has, in turn, led to the exclusion of many behavioral ecotoxicology studies from chemical risk assessments. To improve understanding of the challenges and opportunities for behavioral ecotoxicology within regulatory toxicology/risk assessment, a unique workshop with international representatives from the fields of behavioral ecology, ecotoxicology, regulatory (eco)toxicology, neurotoxicology, test standardization, and risk assessment resulted in the formation of consensus perspectives and recommendations, which promise to serve as a roadmap to advance interfaces among the basic and translational sciences, and regulatory practices.

Journal ArticleDOI
Eleonora Di Valentino1, Luis A. Anchordoqui2, Özgür Akarsu3, Yacine Ali-Haïmoud4, Luca Amendola5, Nikki Arendse6, Marika Asgari7, Mario Ballardini8, Spyros Basilakos9, Elia S. Battistelli10, Micol Benetti11, Simon Birrer12, François R. Bouchet13, Marco Bruni14, Erminia Calabrese15, David Camarena16, Salvatore Capozziello11, Angela Chen17, Jens Chluba1, Anton Chudaykin, Eoin Ó Colgáin18, Francis-Yan Cyr-Racine19, Paolo de Bernardis10, Javier de Cruz Pérez20, Jacques Delabrouille, Jo Dunkley21, Celia Escamilla-Rivera22, Agnès Ferté23, Fabio Finelli24, Wendy L. Freedman25, Noemi Frusciante, Elena Giusarma26, Adrià Gómez-Valent5, Will Handley27, Ian Harrison1, Luke Hart1, Alan Heavens28, Hendrik Hildebrandt29, Daniel E. Holz25, Dragan Huterer17, Mikhail M. Ivanov4, Shahab Joudaki30, Marc Kamionkowski31, Tanvi Karwal32, Lloyd Knox33, Suresh Kumar34, Luca Lamagna10, Julien Lesgourgues35, Matteo Lucca36, Valerio Marra16, Silvia Masi10, Sabino Matarrese37, Arindam Mazumdar38, Alessandro Melchiorri10, Olga Mena39, Laura Mersini-Houghton40, Vivian Miranda41, Cristian Moreno-Pulido20, David F. Mota42, J. Muir12, Ankan Mukherjee43, Florian Niedermann, Alessio Notari20, Rafael C. Nunes44, Francesco Pace1, Andronikos Paliathanasis45, Antonella Palmese46, Supriya Pan47, Daniela Paoletti24, Valeria Pettorino48, F. Piacentini10, Vivian Poulin49, Marco Raveri32, Adam G. Riess31, Vincenzo Salzano50, Emmanuel N. Saridakis9, Anjan A. Sen43, Arman Shafieloo51, Anowar J. Shajib52, Joseph Silk31, Joseph Silk53, Alessandra Silvestri54, Martin S. Sloth, Tristan L. Smith55, Joan Solà Peracaula20, Carsten van de Bruck56, Licia Verde20, Luca Visinelli57, Benjamin D. Wandelt53, Deng Wang, Jian-Min Wang, Anil Kumar Yadav58, Weiqiang Yang59 
University of Manchester1, City University of New York2, Istanbul Technical University3, New York University4, Heidelberg University5, University of Copenhagen6, University of Edinburgh7, University of Bologna8, Academy of Athens9, Sapienza University of Rome10, University of Naples Federico II11, Stanford University12, Institut d'Astrophysique de Paris13, University of Portsmouth14, Cardiff University15, Universidade Federal do Espírito Santo16, University of Michigan17, Asia Pacific Center for Theoretical Physics18, University of New Mexico19, University of Barcelona20, Princeton University21, National Autonomous University of Mexico22, California Institute of Technology23, INAF24, University of Chicago25, Michigan Technological University26, University of Cambridge27, Imperial College London28, Ruhr University Bochum29, University of Waterloo30, Johns Hopkins University31, University of Pennsylvania32, University of California, Davis33, Birla Institute of Technology and Science34, RWTH Aachen University35, Université libre de Bruxelles36, University of Padua37, Indian Institute of Technology Kharagpur38, Spanish National Research Council39, University of North Carolina at Chapel Hill40, University of Arizona41, University of Oslo42, Jamia Millia Islamia43, National Institute for Space Research44, Durban University of Technology45, Fermilab46, Presidency University, Kolkata47, Université Paris-Saclay48, University of Montpellier49, University of Szczecin50, Korea Astronomy and Space Science Institute51, University of California, Los Angeles52, Centre national de la recherche scientifique53, Leiden University54, Swarthmore College55, University of Sheffield56, University of Amsterdam57, United College, Winnipeg58, Liaoning Normal University59
TL;DR: In this paper, the authors present a list of important goals that need to be addressed in the next decade, also taking into account the current discordances present between the different cosmological probes, as the Hubble constant H0 value, the σ8S8 tension, and the anomalies present in the Planck results.

Journal ArticleDOI
TL;DR: The CNN model effectively solves the limitations of traditional machine learning in sEMG gesture recognition, and combines 1‐dim convolution kernel to extract deep abstract features to improve the recognition effect.
Abstract: For the problem of surface electromyography (sEMG) gesture recognition, considering the fact that the traditional machine learning model is susceptible to the sEMG feature extraction method, it is difficult to distinguish the subtle differences between similar gestures. The NinaPro DB1 dataset is used as the research object, and the sEMG feature image and the Convolutional Neural Network (CNN) are combined to recognize 52 gesture movements. The CNN model effectively solves the limitations of traditional machine learning in sEMG gesture recognition, and combines 1‐dim convolution kernel to extract deep abstract features to improve the recognition effect. Finally, the simulation experiment shows that compared with the accuracy of the raw‐sEMG images based on the CNN and the sEMG‐feature‐images based on the CNN and sEMG based on the traditional machine learning, the multi‐sEMG‐features image based on the CNN is the highest, which coming up to 82.54%.

Journal ArticleDOI
TL;DR: Gabauer et al. as mentioned in this paper investigated 1-year interest rate swaps on USD, EUR, JPY and GBP between 2005 and 2020 using a quantile connectedness model, which allows for a nuanced investigation of connectedness and adds to understanding the monetary policy transmission mechanism within a highly integrated international financial system.

Journal ArticleDOI
TL;DR: This survey introduces a review of existing relatively mature and representative underwater image processing models, which are classified into seven categories including enhancement, fog removal, noise reduction, segmentation, salient object detection, colour constancy and restoration.
Abstract: With increasing attentions being drawn to the underwater observation and utilization of marine resources in recent years, underwater image processing and analysis have become an active research hotspot. Different from the general images, marine environment is usually faced with some complicated situations such as underwater turbulence and diffusion, severe absorption and scattering of water body, various noises, low contrast, uniform illumination, monotonous color, complex underwater-background. In response to these typical challenges, a large body of works in underwater image processing has been exploited in recent years. This survey introduces a review of existing relatively mature and representative underwater image processing models, which are classified into seven categories including enhancement, fog removal, noise reduction, segmentation, salient object detection, color constancy and restoration. We then objectively evaluate the current situations and future development trend of underwater image processing, and provide some insights into the prospective research directions to promote the development of underwater vision and beyond.

Journal ArticleDOI
TL;DR: In this paper, the authors presented the outcomes analysis according to concomitant baseline medications (prior to ICI initiation) with putative immune-modulatory effects in a large cohort of patients with metastatic non-small cell lung cancer (NSCLC) with a PD-L1 expression ≥ 50, receiving first-line pembrolizumab monotherapy.
Abstract: BACKGROUND Some concomitant medications including antibiotics (ATB) have been reproducibly associated with worse survival following immune checkpoint inhibitors (ICIs) in unselected patients with non-small cell lung cancer (NSCLC) (according to programmed death-ligand 1 (PD-L1) expression and treatment line). Whether such relationship is causative or associative is matter of debate. METHODS We present the outcomes analysis according to concomitant baseline medications (prior to ICI initiation) with putative immune-modulatory effects in a large cohort of patients with metastatic NSCLC with a PD-L1 expression ≥50%, receiving first-line pembrolizumab monotherapy. We also evaluated a control cohort of patients with metastatic NSCLC treated with first-line chemotherapy. The interaction between key medications and therapeutic modality (pembrolizumab vs chemotherapy) was validated in pooled multivariable analyses. RESULTS 950 and 595 patients were included in the pembrolizumab and chemotherapy cohorts, respectively. Corticosteroid and proton pump inhibitor (PPI) therapy but not ATB therapy was associated with poorer performance status at baseline in both the cohorts. No association with clinical outcomes was found according to baseline statin, aspirin, β-blocker and metformin within the pembrolizumab cohort. On the multivariable analysis, ATB emerged as a strong predictor of worse overall survival (OS) (HR=1.42 (95% CI 1.13 to 1.79); p=0.0024), and progression free survival (PFS) (HR=1.29 (95% CI 1.04 to 1.59); p=0.0192) in the pembrolizumab but not in the chemotherapy cohort. Corticosteroids were associated with shorter PFS (HR=1.69 (95% CI 1.42 to 2.03); p<0.0001), and OS (HR=1.93 (95% CI 1.59 to 2.35); p<0.0001) following pembrolizumab, and shorter PFS (HR=1.30 (95% CI 1.08 to 1.56), p=0.0046) and OS (HR=1.58 (95% CI 1.29 to 1.94), p<0.0001), following chemotherapy. PPIs were associated with worse OS (HR=1.49 (95% CI 1.26 to 1.77); p<0.0001) with pembrolizumab and shorter OS (HR=1.12 (95% CI 1.02 to 1.24), p=0.0139), with chemotherapy. At the pooled analysis, there was a statistically significant interaction with treatment (pembrolizumab vs chemotherapy) for corticosteroids (p=0.0020) and PPIs (p=0.0460) with respect to OS, for corticosteroids (p<0.0001), ATB (p=0.0290), and PPIs (p=0.0487) with respect to PFS, and only corticosteroids (p=0.0033) with respect to objective response rate. CONCLUSION In this study, we validate the significant negative impact of ATB on pembrolizumab monotherapy but not chemotherapy outcomes in NSCLC, producing further evidence about their underlying immune-modulatory effect. Even though the magnitude of the impact of corticosteroids and PPIs is significantly different across the cohorts, their effects might be driven by adverse disease features.