scispace - formally typeset
Search or ask a question
Institution

University of Portsmouth

EducationPortsmouth, Portsmouth, United Kingdom
About: University of Portsmouth is a education organization based out in Portsmouth, Portsmouth, United Kingdom. It is known for research contribution in the topics: Population & Galaxy. The organization has 5452 authors who have published 14256 publications receiving 424346 citations. The organization is also known as: Portsmouth and Gosport School of Science and Art & Portsmouth and Gosport School of Science and the Arts.


Papers
More filters
Journal ArticleDOI
TL;DR: A series of improvements to the spectroscopic reductions are described, including better flat fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities.
Abstract: This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11,663 deg^2 of imaging data, with most of the ~2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry on a 120° long, 2°.5 wide stripe along the celestial equator in the Southern Galactic Cap, with some regions covered by as many as 90 individual imaging runs. We include a co-addition of the best of these data, going roughly 2 mag fainter than the main survey over 250 deg^2. The survey has completed spectroscopy over 9380 deg^2; the spectroscopy is now complete over a large contiguous area of the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog, reducing the rms statistical errors at the bright end to 45 milliarcseconds per coordinate. We further quantify a systematic error in bright galaxy photometry due to poor sky determination; this problem is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities.

5,665 citations

Journal ArticleDOI
TL;DR: This article has provided general, comprehensive coverage of the SDR technique, from its practical deployments and scope of applicability to key theoretical results, and showcased several representative applications, namely MIMO detection, B¿ shimming in MRI, and sensor network localization.
Abstract: In this article, we have provided general, comprehensive coverage of the SDR technique, from its practical deployments and scope of applicability to key theoretical results. We have also showcased several representative applications, namely MIMO detection, B? shimming in MRI, and sensor network localization. Another important application, namely downlink transmit beamforming, is described in [1]. Due to space limitations, we are unable to cover many other beautiful applications of the SDR technique, although we have done our best to illustrate the key intuitive ideas that resulted in those applications. We hope that this introductory article will serve as a good starting point for readers who would like to apply the SDR technique to their applications, and to locate specific references either in applications or theory.

2,996 citations

Journal ArticleDOI
TL;DR: The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrogram, and a novel optical interferometer.
Abstract: The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 sq. deg of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-Object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include measured abundances of 15 different elements for each star. In total, SDSS-III added 2350 sq. deg of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 sq. deg; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5,513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra.

2,471 citations

Journal ArticleDOI
Shadab Alam1, Metin Ata2, Stephen Bailey3, Florian Beutler3, Dmitry Bizyaev4, Dmitry Bizyaev5, Jonathan Blazek6, Adam S. Bolton7, Joel R. Brownstein7, Angela Burden8, Chia-Hsun Chuang2, Chia-Hsun Chuang9, Johan Comparat9, Antonio J. Cuesta10, Kyle S. Dawson7, Daniel J. Eisenstein11, Stephanie Escoffier12, Héctor Gil-Marín13, Héctor Gil-Marín14, Jan Niklas Grieb15, Nick Hand16, Shirley Ho1, Karen Kinemuchi5, D. Kirkby17, Francisco S. Kitaura16, Francisco S. Kitaura3, Francisco S. Kitaura2, Elena Malanushenko5, Viktor Malanushenko5, Claudia Maraston18, Cameron K. McBride11, Robert C. Nichol18, Matthew D. Olmstead19, Daniel Oravetz5, Nikhil Padmanabhan8, Nathalie Palanque-Delabrouille, Kaike Pan5, Marcos Pellejero-Ibanez20, Marcos Pellejero-Ibanez21, Will J. Percival18, Patrick Petitjean22, Francisco Prada21, Francisco Prada9, Adrian M. Price-Whelan23, Beth Reid16, Beth Reid3, Sergio Rodríguez-Torres21, Sergio Rodríguez-Torres9, Natalie A. Roe3, Ashley J. Ross18, Ashley J. Ross6, Nicholas P. Ross24, Graziano Rossi25, Jose Alberto Rubino-Martin20, Jose Alberto Rubino-Martin21, Shun Saito15, Salvador Salazar-Albornoz15, Lado Samushia26, Ariel G. Sánchez15, Siddharth Satpathy1, David J. Schlegel3, Donald P. Schneider27, Claudia G. Scóccola9, Claudia G. Scóccola28, Claudia G. Scóccola29, Hee-Jong Seo30, Erin Sheldon31, Audrey Simmons5, Anže Slosar31, Michael A. Strauss23, Molly E. C. Swanson11, Daniel Thomas18, Jeremy L. Tinker32, Rita Tojeiro33, Mariana Vargas Magaña1, Mariana Vargas Magaña34, Jose Alberto Vazquez31, Licia Verde, David A. Wake35, David A. Wake36, Yuting Wang37, Yuting Wang18, David H. Weinberg6, Martin White3, Martin White16, W. Michael Wood-Vasey38, Christophe Yèche, Idit Zehavi39, Zhongxu Zhai33, Gong-Bo Zhao37, Gong-Bo Zhao18 
TL;DR: In this article, the authors present cosmological results from the final galaxy clustering data set of the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III.
Abstract: We present cosmological results from the final galaxy clustering data set of the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. Our combined galaxy sample comprises 1.2 million massive galaxies over an effective area of 9329 deg^2 and volume of 18.7 Gpc^3, divided into three partially overlapping redshift slices centred at effective redshifts 0.38, 0.51 and 0.61. We measure the angular diameter distance and Hubble parameter H from the baryon acoustic oscillation (BAO) method, in combination with a cosmic microwave background prior on the sound horizon scale, after applying reconstruction to reduce non-linear effects on the BAO feature. Using the anisotropic clustering of the pre-reconstruction density field, we measure the product D_MH from the Alcock–Paczynski (AP) effect and the growth of structure, quantified by fσ_8(z), from redshift-space distortions (RSD). We combine individual measurements presented in seven companion papers into a set of consensus values and likelihoods, obtaining constraints that are tighter and more robust than those from any one method; in particular, the AP measurement from sub-BAO scales sharpens constraints from post-reconstruction BAOs by breaking degeneracy between D_M and H. Combined with Planck 2016 cosmic microwave background measurements, our distance scale measurements simultaneously imply curvature Ω_K = 0.0003 ± 0.0026 and a dark energy equation-of-state parameter w = −1.01 ± 0.06, in strong affirmation of the spatially flat cold dark matter (CDM) model with a cosmological constant (ΛCDM). Our RSD measurements of fσ_8, at 6 per cent precision, are similarly consistent with this model. When combined with supernova Ia data, we find H_0 = 67.3 ± 1.0 km s^−1 Mpc^−1 even for our most general dark energy model, in tension with some direct measurements. Adding extra relativistic species as a degree of freedom loosens the constraint only slightly, to H_0 = 67.8 ± 1.2 km s^−1 Mpc^−1. Assuming flat ΛCDM, we find Ω_m = 0.310 ± 0.005 and H_0 = 67.6 ± 0.5 km s^−1 Mpc^−1, and we find a 95 per cent upper limit of 0.16 eV c^−2 on the neutrino mass sum.

2,413 citations

Journal ArticleDOI
TL;DR: SDSS-III as mentioned in this paper is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars.
Abstract: Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS DR8 (which occurred in Jan 2011). This paper presents an overview of the four SDSS-III surveys. BOSS will measure redshifts of 1.5 million massive galaxies and Lya forest spectra of 150,000 quasars, using the BAO feature of large scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z 100 per resolution element), H-band (1.51-1.70 micron) spectra of 10^5 evolved, late-type stars, measuring separate abundances for ~15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. MARVELS will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10-40 m/s, ~24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. (Abridged)

2,265 citations


Authors

Showing all 5624 results

NameH-indexPapersCitations
Sheng Chen7168827847
Mathew Smith7121723932
Richard Harris7175523272
Tamara M. Davis7027324313
Francisco S. N. Lobo6937016283
Jiju Antony6841117290
Randall R. Parrish6821216398
Salvatore Greco6735819925
Bruce A. Bassett6722625033
Joseph F. Costello6718925729
Paul Roderick6739220741
Jonathan Evans6731416086
Yoshikazu Takada6618816088
A. Carnero Rosell6527117932
Matthew M. Pieri6511135705
Network Information
Related Institutions (5)
University of Sheffield
102.9K papers, 3.9M citations

94% related

University of Birmingham
115.3K papers, 4.3M citations

93% related

University of Manchester
168K papers, 6.4M citations

93% related

University of Leeds
101.8K papers, 3.6M citations

92% related

University of Nottingham
119.6K papers, 4.2M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202363
2022282
2021961
2020976
2019905
2018850