scispace - formally typeset
Search or ask a question
Institution

University of Queensland

EducationBrisbane, Queensland, Australia
About: University of Queensland is a education organization based out in Brisbane, Queensland, Australia. It is known for research contribution in the topics: Population & Poison control. The organization has 51138 authors who have published 155721 publications receiving 5717659 citations. The organization is also known as: UQ & The University of Queensland.


Papers
More filters
Journal ArticleDOI
TL;DR: It is argued that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas.
Abstract: Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to ‘barrens’ when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs.

721 citations

Journal ArticleDOI
Derrek P. Hibar1, Jason L. Stein1, Jason L. Stein2, Miguel E. Rentería3  +341 moreInstitutions (93)
09 Apr 2015-Nature
TL;DR: In this paper, the authors conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts.
Abstract: The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

721 citations

Journal ArticleDOI
TL;DR: This resource provides a complete domain-to-species taxonomic framework for bacterial and archaeal genomes, which will facilitate research on uncultivated species and improve communication of scientific results.
Abstract: The Genome Taxonomy Database is a phylogenetically consistent, genome-based taxonomy that provides rank-normalized classifications for ~150,000 bacterial and archaeal genomes from domain to genus. However, almost 40% of the genomes in the Genome Taxonomy Database lack a species name. We address this limitation by using commonly accepted average nucleotide identity criteria to set bounds on species and propose species clusters that encompass all publicly available bacterial and archaeal genomes. Unlike previous average nucleotide identity studies, we chose a single representative genome to serve as the effective nomenclatural 'type' defining each species. Of the 24,706 proposed species clusters, 8,792 are based on published names. We assigned placeholder names to the remaining 15,914 species clusters to provide names to the growing number of genomes from uncultivated species. This resource provides a complete domain-to-species taxonomic framework for bacterial and archaeal genomes, which will facilitate research on uncultivated species and improve communication of scientific results.

720 citations

Journal ArticleDOI
TL;DR: This work model the costs and health outcomes associated with interventions to improve physical activity in the population, and identifies specific interventions that are likely to be cost-saving.
Abstract: Background Physical inactivity is a key risk factor for chronic disease, but a growing number of people are not achieving the recommended levels of physical activity necessary for good health. Australians are no exception; despite Australia's image as a sporting nation, with success at the elite level, the majority of Australians do not get enough physical activity. There are many options for intervention, from individually tailored advice, such as counselling from a general practitioner, to population-wide approaches, such as mass media campaigns, but the most cost-effective mix of interventions is unknown. In this study we evaluate the cost-effectiveness of interventions to promote physical activity. Methods and Findings From evidence of intervention efficacy in the physical activity literature and evaluation of the health sector costs of intervention and disease treatment, we model the cost impacts and health outcomes of six physical activity interventions, over the lifetime of the Australian population. We then determine cost-effectiveness of each intervention against current practice for physical activity intervention in Australia and derive the optimal pathway for implementation. Based on current evidence of intervention effectiveness, the intervention programs that encourage use of pedometers (Dominant) and mass media-based community campaigns (Dominant) are the most cost-effective strategies to implement and are very likely to be cost-saving. The internet-based intervention program (AUS$3,000/DALY), the GP physical activity prescription program (AUS$12,000/DALY), and the program to encourage more active transport (AUS$20,000/DALY), although less likely to be cost-saving, have a high probability of being under a AUS$50,000 per DALY threshold. GP referral to an exercise physiologist (AUS$79,000/DALY) is the least cost-effective option if high time and travel costs for patients in screening and consulting an exercise physiologist are considered. Conclusions Intervention to promote physical activity is recommended as a public health measure. Despite substantial variability in the quantity and quality of evidence on intervention effectiveness, and uncertainty about the long-term sustainability of behavioural changes, it is highly likely that as a package, all six interventions could lead to substantial improvement in population health at a cost saving to the health sector. Please see later in the article for Editors' Summary

719 citations

Journal ArticleDOI
25 Jul 2013-Immunity
TL;DR: The capacity of both conventional and targeted anticancer therapies to enhance the immunogenic properties of malignant cells and to stimulate immune effector cells, either directly or by subverting the immunosuppressive circuitries that preclude antitumor immune responses in cancer patients are discussed.

719 citations


Authors

Showing all 52145 results

NameH-indexPapersCitations
Graham A. Colditz2611542256034
George Davey Smith2242540248373
David J. Hunter2131836207050
Daniel Levy212933194778
Christopher J L Murray209754310329
Matthew Meyerson194553243726
Luigi Ferrucci1931601181199
Nicholas G. Martin1921770161952
Paul M. Thompson1832271146736
Jie Zhang1784857221720
Alan D. Lopez172863259291
Ian J. Deary1661795114161
Steven N. Blair165879132929
Carlos Bustamante161770106053
David W. Johnson1602714140778
Network Information
Related Institutions (5)
University of Sydney
187.3K papers, 6.1M citations

98% related

University of Melbourne
174.8K papers, 6.3M citations

98% related

University of New South Wales
153.6K papers, 4.8M citations

97% related

University of British Columbia
209.6K papers, 9.2M citations

93% related

National University of Singapore
165.4K papers, 5.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023507
20221,728
202111,678
202010,832
20199,671
20189,015