scispace - formally typeset
Search or ask a question
Institution

University of Queensland

EducationBrisbane, Queensland, Australia
About: University of Queensland is a education organization based out in Brisbane, Queensland, Australia. It is known for research contribution in the topics: Population & Poison control. The organization has 51138 authors who have published 155721 publications receiving 5717659 citations. The organization is also known as: UQ & The University of Queensland.


Papers
More filters
Journal ArticleDOI
01 Feb 2006-Carbon
TL;DR: In this paper, the authors report superior electric double layer capacitive properties of ordered mesoporous carbon (OMCs) with varying ordered pore symmetries and mesopore structure.

677 citations

Journal ArticleDOI
TL;DR: Improved ecological understanding and the availability of a series of highly effective selective insecticides throughout the 1990s provided the basis for sustainable and economically viable integrated pest management (IPM) approaches, however, repeated reversion to scheduled insecticide applications has resulted in resistance to these and more recently introduced compounds and the breakdown of IPM programs.
Abstract: Agricultural intensification and greater production of Brassica vegetable and oilseed crops over the past two decades have increased the pest status of the diamondback moth (DBM), Plutella xylostella L., and it is now estimated to cost the world economy US$4–5 billion annually. Our understanding of some fundamental aspects of DBM biology and ecology, particularly host plant relationships, tritrophic interactions, and migration, has improved considerably but knowledge of other aspects, e.g., its global distribution and relative abundance, remains surprisingly limited. Biological control still focuses almost exclusively on a few species of hymenopteran parasitoids. Although these can be remarkably effective, insecticides continue to form the basis of management; their inappropriate use disrupts parasitoids and has resulted in field resistance to all available products. Improved ecological understanding and the availability of a series of highly effective selective insecticides throughout the 1990s provided ...

676 citations

Journal ArticleDOI
01 Oct 2010-Genetics
TL;DR: Evaluated parametric and semiparametric models for GS using wheat and maize data in which different traits were measured in several environmental conditions indicate that models including marker information had higher predictive ability than pedigree-based models.
Abstract: The availability of dense molecular markers has made possible the use of genomic selection (GS) for plant breeding. However, the evaluation of models for GS in real plant populations is very limited. This article evaluates the performance of parametric and semiparametric models for GS using wheat (Triticum aestivum L.) and maize (Zea mays) data in which different traits were measured in several environmental conditions. The findings, based on extensive cross-validations, indicate that models including marker information had higher predictive ability than pedigree-based models. In the wheat data set, and relative to a pedigree model, gains in predictive ability due to inclusion of markers ranged from 7.7 to 35.7%. Correlation between observed and predictive values in the maize data set achieved values up to 0.79. Estimates of marker effects were different across environmental conditions, indicating that genotype × environment interaction is an important component of genetic variability. These results indicate that GS in plant breeding can be an effective strategy for selecting among lines whose phenotypes have yet to be observed.

676 citations

Journal ArticleDOI
TL;DR: It is shown that mouse SOX9 protein is able to bind to a SOX/SRY consensus motif in DNA and contains a modular transcriptional activation domain, consistent with a role forSOX9 as a transcription factor acting on genes involved in cartilage development.

676 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of recent research progress in graphene-based materials as electrodes for electrochemical energy storage, including the use of graphene for improving the performance of lithium-sulfur and lithium-oxygen batteries.
Abstract: The ever-increasing demands for energy and environmental concerns due to burning fossil fuels are the key drivers of today's R&D of innovative energy storage systems. This paper provides an overview of recent research progress in graphene-based materials as electrodes for electrochemical energy storage. Beginning with a brief description of the important properties of single-layer graphene, methods for the preparation of graphene and its derivatives (graphene oxide and reduced graphene oxide) are summarized. Then, graphene-based electrode materials for electrochemical capacitors and lithium-ion batteries are reviewed. The use of graphene for improving the performance of lithium–sulfur and lithium–oxygen batteries is also presented. Future research trend in the development of high-power-density and high-energy-density electrochemical energy storage devices is analysed.

675 citations


Authors

Showing all 52145 results

NameH-indexPapersCitations
Graham A. Colditz2611542256034
George Davey Smith2242540248373
David J. Hunter2131836207050
Daniel Levy212933194778
Christopher J L Murray209754310329
Matthew Meyerson194553243726
Luigi Ferrucci1931601181199
Nicholas G. Martin1921770161952
Paul M. Thompson1832271146736
Jie Zhang1784857221720
Alan D. Lopez172863259291
Ian J. Deary1661795114161
Steven N. Blair165879132929
Carlos Bustamante161770106053
David W. Johnson1602714140778
Network Information
Related Institutions (5)
University of Sydney
187.3K papers, 6.1M citations

98% related

University of Melbourne
174.8K papers, 6.3M citations

98% related

University of New South Wales
153.6K papers, 4.8M citations

97% related

University of British Columbia
209.6K papers, 9.2M citations

93% related

National University of Singapore
165.4K papers, 5.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023507
20221,728
202111,678
202010,832
20199,671
20189,015