scispace - formally typeset
Search or ask a question
Institution

University of Rajasthan

EducationJaipur, India
About: University of Rajasthan is a education organization based out in Jaipur, India. It is known for research contribution in the topics: Chemical shift & Derivative (chemistry). The organization has 15058 authors who have published 15733 publications receiving 117400 citations. The organization is also known as: Rajasthan University.


Papers
More filters
Journal ArticleDOI
K. Aamodt1, Betty Abelev2, A. Abrahantes Quintana, Dagmar Adamová3  +1011 moreInstitutions (81)
TL;DR: In this paper, the first measurement of charged particle elliptic flow in Pb-Pb collisions at root s(NN) p = 2.76 TeV with the ALICE detector at the CERN Large Hadron Collider was performed in the central pseudorapidity region.
Abstract: We report the first measurement of charged particle elliptic flow in Pb-Pb collisions at root s(NN) p = 2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region (vertical bar eta vertical bar < 0.8) and transverse momentum range 0.2 < p(t) < 5.0 GeV/c. The elliptic flow signal v(2), measured using the 4-particle correlation method, averaged over transverse momentum and pseudorapidity is 0.087 +/- 0.002(stat) +/- 0.003(syst) in the 40%-50% centrality class. The differential elliptic flow v(2)(p(t)) reaches a maximum of 0.2 near p(t) = 3 GeV/c. Compared to RHIC Au-Au collisions at root s(NN) = 200 GeV, the elliptic flow increases by about 30%. Some hydrodynamic model predictions which include viscous corrections are in agreement with the observed increase.

652 citations

Journal ArticleDOI
Joseph Adams1, C. Adler2, Madan M. Aggarwal3, Zubayer Ahammed4  +364 moreInstitutions (39)
TL;DR: High statistics measurements of inclusive charged hadron production in Au+Au and p+p collisions at sqrt[s(NN)]=200 GeV report no evidence of p(T)-dependent suppression, which may be expected from models incorporating jet attenuation in cold nuclear matter or scattering of fragmentation hadrons.
Abstract: We report high statistics measurements of inclusive charged hadron production in Au+Au and p+p collisions at rootS(NN)=200 GeV. A large, approximately constant hadron suppression is observed in central Au+Au collisions for 5

628 citations

Journal ArticleDOI
Joseph Adams1, C. Adler2, Madan M. Aggarwal3, Zubayer Ahammed4  +364 moreInstitutions (39)
TL;DR: These results demonstrate that the strong suppression of the inclusive yield and back-to-back correlations at high p(T) previously observed in central Au+Au collisions are due to final-state interactions with the dense medium generated in such collisions.
Abstract: We report measurements of single-particle inclusive spectra and two-particle azimuthal distributions of charged hadrons at high transverse momentum (high p(T)) in minimum bias and central d+Au collisions at sqrt[s(NN)]=200 GeV. The inclusive yield is enhanced in d+Au collisions relative to binary-scaled p+p collisions, while the two-particle azimuthal distributions are very similar to those observed in p+p collisions. These results demonstrate that the strong suppression of the inclusive yield and back-to-back correlations at high p(T) previously observed in central Au+Au collisions are due to final-state interactions with the dense medium generated in such collisions.

604 citations

Journal ArticleDOI
Pietro Cortese, G. Dellacasa, Luciano Ramello, M. Sitta  +975 moreInstitutions (78)
TL;DR: The ALICE Collaboration as mentioned in this paper is a general-purpose heavy-ion experiment designed to study the physics of strongly interacting matter and the quark-gluon plasma in nucleus-nucleus collisions at the LHC.
Abstract: ALICE is a general-purpose heavy-ion experiment designed to study the physics of strongly interacting matter and the quark–gluon plasma in nucleus–nucleus collisions at the LHC. It currently involves more than 900 physicists and senior engineers, from both the nuclear and high-energy physics sectors, from over 90 institutions in about 30 countries.The ALICE detector is designed to cope with the highest particle multiplicities above those anticipated for Pb–Pb collisions (dNch/dy up to 8000) and it will be operational at the start-up of the LHC. In addition to heavy systems, the ALICE Collaboration will study collisions of lower-mass ions, which are a means of varying the energy density, and protons (both pp and pA), which primarily provide reference data for the nucleus–nucleus collisions. In addition, the pp data will allow for a number of genuine pp physics studies.The detailed design of the different detector systems has been laid down in a number of Technical Design Reports issued between mid-1998 and the end of 2004. The experiment is currently under construction and will be ready for data taking with both proton and heavy-ion beams at the start-up of the LHC.Since the comprehensive information on detector and physics performance was last published in the ALICE Technical Proposal in 1996, the detector, as well as simulation, reconstruction and analysis software have undergone significant development. The Physics Performance Report (PPR) provides an updated and comprehensive summary of the performance of the various ALICE subsystems, including updates to the Technical Design Reports, as appropriate.The PPR is divided into two volumes. Volume I, published in 2004 (CERN/LHCC 2003-049, ALICE Collaboration 2004 J. Phys. G: Nucl. Part. Phys. 30 1517–1763), contains in four chapters a short theoretical overview and an extensive reference list concerning the physics topics of interest to ALICE, the experimental conditions at the LHC, a short summary and update of the subsystem designs, and a description of the offline framework and Monte Carlo event generators.The present volume, Volume II, contains the majority of the information relevant to the physics performance in proton–proton, proton–nucleus, and nucleus–nucleus collisions. Following an introductory overview, Chapter 5 describes the combined detector performance and the event reconstruction procedures, based on detailed simulations of the individual subsystems. Chapter 6 describes the analysis and physics reach for a representative sample of physics observables, from global event characteristics to hard processes.

587 citations

Journal ArticleDOI
TL;DR: In this paper, the centrality dependence of the chargedparticle multiplicity density at midrapidity in Pb-Pb collisions at root s(NN) = 2: 76 TeV is presented.
Abstract: The centrality dependence of the charged-particle multiplicity density at midrapidity in Pb-Pb collisions at root s(NN) = 2: 76 TeV is presented. The charged-particle density normalized per participating nucleon pair increases by about a factor of 2 from peripheral (70%-80%) to central (0%-5%) collisions. The centrality dependence is found to be similar to that observed at lower collision energies. The data are compared with models based on different mechanisms for particle production in nuclear collisions.

553 citations


Authors

Showing all 15080 results

NameH-indexPapersCitations
Rakesh K. Jain2001467177727
J. Pluta12065952025
Sudhir Raniwala11359144168
Rashmi Raniwala11357944076
Sanjay Jain10388146880
Mirko Planinic9446731957
Manish Sharma82140733361
Nikola Poljak7839320795
Hari M. Srivastava76112642635
Radhey S. Gupta7137718078
Ashwani Kumar6670318099
Amit Kumar65161819277
Rashmi Gupta5242850962
Allan R. Oseroff481217029
Vinod K. Aswal465569917
Network Information
Related Institutions (5)
Banaras Hindu University
23.9K papers, 464.6K citations

93% related

Panjab University, Chandigarh
18.7K papers, 461K citations

92% related

Aligarh Muslim University
16.4K papers, 289K citations

92% related

University of Delhi
36.4K papers, 666.9K citations

91% related

University of Madras
11.3K papers, 211.1K citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202233
2021218
2020242
2019163
2018143