scispace - formally typeset
Search or ask a question

Showing papers by "University of Reading published in 2007"


Journal ArticleDOI
TL;DR: In this article, the Lagrangian conservation principle for potential vorticity and potential temperature is extended to take the lower boundary condition into account, where the total mass under each isentropic surface is specified.
Abstract: The two main principles underlying the use of isentropic maps of potential vorticity to represent dynamical processes in the atmosphere are reviewed, including the extension of those principles to take the lower boundary condition into account. the first is the familiar Lagrangian conservation principle, for potential vorticity (PV) and potential temperature, which holds approximately when advective processes dominate frictional and diabatic ones. the second is the principle of ‘invertibility’ of the PV distribution, which holds whether or not diabatic and frictional processes are important. the invertibility principle states that if the total mass under each isentropic surface is specified, then a knowledge of the global distribution of PV on each isentropic surface and of potential temperature at the lower boundary (which within certain limitations can be considered to be part of the PV distribution) is sufficient to deduce, diagnostically, all the other dynamical fields, such as winds, temperatures, geopotential heights, static stabilities, and vertical velocities, under a suitable balance condition. the statement that vertical velocities can be deduced is related to the well-known omega equation principle, and depends on having sufficient information about diabatic and frictional processes. Quasi-geostrophic, semigeostrophic, and ‘nonlinear normal mode initialization’ realizations of the balance condition are discussed. an important constraint on the mass-weighted integral of PV over a material volume and on its possible diabatic and frictional change is noted. Some basic examples are given, both from operational weather analyses and from idealized theoretical models, to illustrate the insights that can be gained from this approach and to indicate its relation to classical synoptic and air-mass concepts. Included are discussions of (a) the structure, origin and persistence of cutoff cyclones and blocking anticyclones, (b) the physical mechanisms of Rossby wave propagation, baroclinic instability, and barotropic instability, and (c) the spatially and temporally nonuniform way in which such waves and instabilities may become strongly nonlinear, as in an occluding cyclone or in the formation of an upper air shear line. Connections with principles derived from synoptic experience are indicated, such as the ‘PVA rule’ concerning positive vorticity advection on upper air charts, and the role of disturbances of upper air origin, in combination with low-level warm advection, in triggering latent heat release to produce explosive cyclonic development. In all cases it is found that time sequences of isentropic potential vorticity and surface potential temperature charts—which succinctly summarize the combined effects of vorticity advection, thermal advection, and vertical motion without requiring explicit knowledge of the vertical motion field—lead to a very clear and complete picture of the dynamics. This picture is remarkably simple in many cases of real meteorological interest. It involves, in principle, no sacrifices in quantitative accuracy beyond what is inherent in the concept of balance, as used for instance in the initialization of numerical weather forecasts.

2,763 citations


Journal ArticleDOI
TL;DR: The findings suggest that the gut microbiota contribute towards the pathophysiological regulation of endotoxaemia and set the tone of inflammation for occurrence of diabetes and/or obesity.
Abstract: Aims/hypothesis Recent evidence suggests that a particular gut microbial community may favour occurrence of the metabolic diseases. Recently, we reported that high-fat (HF) feeding was associated with higher endotoxaemia and lower Bifidobacterium species (spp.) caecal content in mice. We therefore tested whether restoration of the quantity of caecal Bifidobacterium spp. could modulate metabolic endotoxaemia, the inflammatory tone and the development of diabetes.

1,607 citations


Journal ArticleDOI
TL;DR: In this article, a variety of diagnostic methods are used to determine how heat waves, heavy precipitation, drought, wind storms, and storm surges change between present (1961-90) and future (2071-2100) climate on the basis of regional climate model simulations produced by the PRUDENCE project.
Abstract: This paper presents an overview of changes in the extreme events that are most likely to affect Europe in forthcoming decades. A variety of diagnostic methods are used to determine how heat waves, heavy precipitation, drought, wind storms, and storm surges change between present (1961–90) and future (2071–2100) climate on the basis of regional climate model simulations produced by the PRUDENCE project. A summary of the main results follows. Heat waves – Regional surface warming causes the frequency, intensity and duration of heat waves to increase over Europe. By the end of the twenty first century, countries in central Europe will experience the same number of hot days as are currently experienced in southern Europe. The intensity of extreme temperatures increases more rapidly than the intensity of more moderate temperatures over the continental interior due to increases in temperature variability. Precipitation – Heavy winter precipitation increases in central and northern Europe and decreases in the south; heavy summer precipitation increases in north-eastern Europe and decreases in the south. Mediterranean droughts start earlier in the year and last longer. Winter storms – Extreme wind speeds increase between 45°N and 55°N, except over and south of the Alps, and become more north-westerly than cuurently. These changes are associated with reductions in mean sea-level pressure, leading to more North Sea storms and a corresponding increase in storm surges along coastal regions of Holland, Germany and Denmark, in particular. These results are found to depend to different degrees on model formulation. While the responses of heat waves are robust to model formulation, the magnitudes of changes in precipitation and wind speed are sensitive to the choice of regional model, and the detailed patterns of these changes are sensitive to the choice of the driving global model. In the case of precipitation, variation between models can exceed both internal variability and variability between different emissions scenarios.

1,317 citations


Journal ArticleDOI
TL;DR: A conceptual model for exploring how one mobile-agent-based ecosystem service (MABES), pollination, is affected by land-use change, and then generalize the model to other MABES is developed.
Abstract: Many ecosystem services are delivered by organisms that depend on habitats that are segregated spatially or temporally from the location where services are provided. Management of mobile organisms contributing to ecosystem services requires consideration not only of the local scale where services are delivered, but also the distribution of resources at the landscape scale, and the foraging ranges and dispersal movements of the mobile agents. We develop a conceptual model for exploring how one such mobile-agent-based ecosystem service (MABES), pollination, is affected by land-use change, and then generalize the model to other MABES. The model includes interactions and feedbacks among policies affecting land use, market forces and the biology of the organisms involved. Animal-mediated pollination contributes to the production of goods of value to humans such as crops; it also bolsters reproduction of wild plants on which other services or service-providing organisms depend. About onethird of crop production depends on animal pollinators, while 60–90% of plant species require an animal pollinator. The sensitivity of mobile organisms to ecological factors that operate across spatial scales makes the services provided by a given community of mobile agents highly contextual. Services vary, depending on the spatial and temporal distribution of resources surrounding the site, and on biotic interactions occurring locally, such as competition among pollinators for resources, and among plants for pollinators. The value of the resulting goods or services may feed back via market-based forces to influence land-use policies, which in turn influence land management practices that alter local habitat conditions and landscape structure. Developing conceptual

1,277 citations


Journal ArticleDOI
26 Jul 2007-Nature
TL;DR: It is shown that anthropogenic forcing has had a detectable influence on observed changes in average precipitation within latitudinal bands, and that these changes cannot be explained by internal climate variability or natural forcing.
Abstract: Human influence on climate has been detected in surface air temperature, sea level pressure, free atmospheric temperature, tropopause height and ocean heat content. Human-induced changes have not, however, previously been detected in precipitation at the global scale, partly because changes in precipitation in different regions cancel each other out and thereby reduce the strength of the global average signal. Models suggest that anthropogenic forcing should have caused a small increase in global mean precipitation and a latitudinal redistribution of precipitation, increasing precipitation at high latitudes, decreasing precipitation at sub-tropical latitudes, and possibly changing the distribution of precipitation within the tropics by shifting the position of the Intertropical Convergence Zone. Here we compare observed changes in land precipitation during the twentieth century averaged over latitudinal bands with changes simulated by fourteen climate models. We show that anthropogenic forcing has had a detectable influence on observed changes in average precipitation within latitudinal bands, and that these changes cannot be explained by internal climate variability or natural forcing. We estimate that anthropogenic forcing contributed significantly to observed increases in precipitation in the Northern Hemisphere mid-latitudes, drying in the Northern Hemisphere subtropics and tropics, and moistening in the Southern Hemisphere subtropics and deep tropics. The observed changes, which are larger than estimated from model simulations, may have already had significant effects on ecosystems, agriculture and human health in regions that are sensitive to changes in precipitation, such as the Sahel.

1,013 citations


Journal ArticleDOI
TL;DR: The basic theory of the main types of EOFs is reviewed, and a wide range of applications using various data sets are also provided.
Abstract: Climate and weather constitute a typical example where high dimensional and complex phenomena meet. The atmospheric system is the result of highly complex interactions between many degrees of freedom or modes. In order to gain insight in understanding the dynamical/physical behaviour involved it is useful to attempt to understand their interactions in terms of a much smaller number of prominent modes of variability. This has led to the development by atmospheric researchers of methods that give a space display and a time display of large space-time atmospheric data. Empirical orthogonal functions (EOFs) were first used in meteorology in the late 1940s. The method, which decomposes a space-time field into spatial patterns and associated time indices, contributed much in advancing our knowledge of the atmosphere. However, since the atmosphere contains all sorts of features, e.g. stationary and propagating, EOFs are unable to provide a full picture. For example, EOFs tend, in general, to be difficult to interpret because of their geometric properties, such as their global feature, and their orthogonality in space and time. To obtain more localised features, modifications, e.g. rotated EOFs (REOFs), have been introduced. At the same time, because these methods cannot deal with propagating features, since they only use spatial correlation of the field, it was necessary to use both spatial and time information in order to identify such features. Extended and complex EOFs were introduced to serve that purpose. Because of the importance of EOFs and closely related methods in atmospheric science, and because the existing reviews of the subject are slightly out of date, there seems to be a need to update our knowledge by including new developments that could not be presented in previous reviews. This review proposes to achieve precisely this goal. The basic theory of the main types of EOFs is reviewed, and a wide range of applications using various data sets are also provided. Copyright © 2007 Royal Meteorological Society

911 citations


Journal ArticleDOI
TL;DR: The role of land surface-related processes and feedbacks during the record-breaking 2003 European summer heat wave is explored with a regional climate model in this article, where sensitivity experiments are performed by perturbing spring soil moisture in order to determine its influence on the formation of the heat wave.
Abstract: The role of land surface–related processes and feedbacks during the record-breaking 2003 European summer heat wave is explored with a regional climate model. All simulations are driven by lateral boundary conditions and sea surface temperatures from the ECMWF operational analysis and 40-yr ECMWF ReAnalysis (ERA-40), thereby prescribing the large-scale circulation. In particular, the contribution of soil moisture anomalies and their interactions with the atmosphere through latent and sensible heat fluxes is investigated. Sensitivity experiments are performed by perturbing spring soil moisture in order to determine its influence on the formation of the heat wave. A multiyear regional climate simulation for 1970–2000 using a fixed model setup is used as the reference period. A large precipitation deficit together with early vegetation green-up and strong positive radiative anomalies in the months preceding the extreme summer event contributed to an early and rapid loss of soil moisture, which exceeded the multiyear average by far. The exceptionally high temperature anomalies, most pronounced in June and August 2003, were initiated by persistent anticyclonic circulation anomalies that enabled a dominance of the local heat balance. In this experiment the hottest phase in early August is realistically simulated despite the absence of an anomaly in total surface net radiation. This indicates an important role of the partitioning of net radiation in latent and sensible heat fluxes, which is to a large extent controlled by soil moisture. The lack of soil moisture strongly reduced latent cooling and thereby amplified the surface temperature anomalies. The evaluation of the experiments with perturbed spring soil moisture shows that this quantity is an important parameter for the evolution of European heat waves. Simulations indicate that without soil moisture anomalies the summer heat anomalies could have been reduced by around 40% in some regions. Moreover, drought conditions are revealed to influence the tropospheric circulation by producing a surface heat low and enhanced ridging in the midtroposphere. This suggests a positive feedback mechanism between soil moisture, continental-scale circulation, and temperature.

800 citations


Journal ArticleDOI
TL;DR: The key challenges identified include: heat transfer problems and resulting non-uniformity in processing, obtaining reliable and reproducible data for process validation, lack of detailed knowledge about the interaction between high pressure, and a number of food constituents, packaging and statutory issues.
Abstract: Consumers increasingly demand convenience foods of the highest quality in terms of natural flavor and taste, and which are free from additives and preservatives. This demand has triggered the need for the development of a number of nonthermal approaches to food processing, of which high-pressure technology has proven to be very valuable. A number of recent publications have demonstrated novel and diverse uses of this technology. Its novel features, which include destruction of microorganisms at room temperature or lower, have made the technology commercially attractive. Enzymes and even spore forming bacteria can be inactivated by the application of pressure-thermal combinations, This review aims to identify the opportunities and challenges associated with this technology. In addition to discussing the effects of high pressure on food components, this review covers the combined effects of high pressure processing with: gamma irradiation, alternating current, ultrasound, and carbon dioxide or anti-microbial treatment. Further, the applications of this technology in various sectors— fruits and vegetables, dairy, and meat processing—have been dealt with extensively. The integration of high-pressure with other matured processing operations such as blanching, dehydration, osmotic dehydration, rehydration, frying, freezing / thawing and solid-liquid extraction has been shown to open up new processing options. The key challenges identified include: heat transfer problems and resulting non-uniformity in processing, obtaining reliable and reproducible data for process validation, lack of detailed knowledge about the interaction between high pressure, and a number of food constituents, packaging and statutory issues.

711 citations


Journal ArticleDOI
TL;DR: In this paper, an analysis of possible regional climate changes over Europe as simulated by 10 regional climate models within the context of PRUDENCE requires a careful investigation of possible systematic biases in the models.
Abstract: The analysis of possible regional climate changes over Europe as simulated by 10 regional climate models within the context of PRUDENCE requires a careful investigation of possible systematic biases in the models. The purpose of this paper is to identify how the main model systematic biases vary across the different models. Two fundamental aspects of model validation are addressed here: the ability to simulate (1) the long-term (30 or 40 years) mean climate and (2) the inter-annual variability. The analysis concentrates on near-surface air temperature and precipitation over land and focuses mainly on winter and summer. In general, there is a warm bias with respect to the CRU data set in these extreme seasons and a tendency to cold biases in the transition seasons. In winter the typical spread (standard deviation) between the models is 1 K. During summer there is generally a better agreement between observed and simulated values of inter-annual variability although there is a relatively clear signal that the modeled temperature variability is larger than suggested by observations, while precipitation variability is closer to observations. The areas with warm (cold) bias in winter generally exhibit wet (dry) biases, whereas the relationship is the reverse during summer (though much less clear, coupling warm (cold) biases with dry (wet) ones). When comparing the RCMs with their driving GCM, they generally reproduce the large-scale circulation of the GCM though in some cases there are substantial differences between regional biases in surface temperature and precipitation.

665 citations


Journal ArticleDOI
TL;DR: In this article, a detailed description of soil and vegetation modelling in L-MEB is given in order to address these needs, and the use of LMEB in soil moisture retrievals is evaluated for several experimental data sets over agricultural crops.

604 citations


Journal ArticleDOI
TL;DR: Marking individual spikelets is an effective method to phenotype genotypes and lines for heat tolerance that removes any apparent tolerance due to temporal escape.
Abstract: In future climates, greater heat tolerance at anthesis will be required in rice. The effect of high temperature at anthesis on spikelet fertility was studied on IR64 (lowland indica) and Azucena (upland japonica) at 29.6 degrees C (control), 33.7 degrees C, and 36.2 degrees C tissue temperatures. The objectives of the study were to: (i) determine the effect of temperature on flowering pattern; (ii) examine the effect of time of day of spikelet anthesis relative to a high temperature episode on spikelet fertility; and (iii) study the interactions between duration of exposure and temperature on spikelet fertility. Plants were grown at 30/24 degrees C day/night temperature in a greenhouse and transferred to growth cabinets for the temperature treatments. Individual spikelets were marked with paint to relate fertility to the time of exposure to different temperatures and durations. In both genotypes the pattern of flowering was similar, and peak anthesis occurred between 10.30 h and 11.30 h at 29.2 degrees C, and about 45 min earlier at 36.2 degrees C. In IR64, high temperature increased the number of spikelets reaching anthesis, whereas in Azucena numbers were reduced. In both genotypes or=33.7 degrees C at anthesis caused sterility. In IR64, there was no interaction between temperature and duration of exposure, and spikelet fertility was reduced by about 7% per degrees C>29.6 degrees C. In Azucena there was a significant interaction and spikelet fertility was reduced by 2.4% degrees Cd-1 above a threshold of 33 degrees C. Marking individual spikelets is an effective method to phenotype genotypes and lines for heat tolerance that removes any apparent tolerance due to temporal escape.

Journal ArticleDOI
TL;DR: In this article, three aspects of the vulnerability of food crop systems to climate change in Africa are discussed: the assessment of the sensitivity of crops to variability in climate, the adaptive capacity of farmers, and the role of institutions in adapting to climate changes.
Abstract: Africa is thought to be the region most vulnerable to the impacts of climate variability and change. Agriculture plays a dominant role in supporting rural livelihoods and economic growth over most of Africa. Three aspects of the vulnerability of food crop systems to climate change in Africa are discussed: the assessment of the sensitivity of crops to variability in climate, the adaptive capacity of farmers, and the role of institutions in adapting to climate change. The magnitude of projected impacts of climate change on food crops in Africa varies widely among different studies. These differences arise from the variety of climate and crop models used, and the different techniques used to match the scale of climate model output to that needed by crop models. Most studies show a negative impact of climate change on crop productivity in Africa. Farmers have proved highly adaptable in the past to short- and long-term variations in climate and in their environment. Key to the ability of farmers to adapt to climate variability and change will be access to relevant knowledge and information. It is important that governments put in place institutional and macro-economic conditions that support and facilitate adaptation and resilience to climate change at local, national and transnational level.

Journal ArticleDOI
11 Jan 2007-BMJ
TL;DR: There is some evidence that multifaceted interventions in hospital reduce the number of falls and that use of hip protectors in care homes prevents hip fractures, and there is insufficient evidence, however, for the effectiveness of other single interventions in hospitals or care homes or multifacete interventions in care home.
Abstract: Objectives To evaluate the evidence for strategies to prevent falls or fractures in residents in care homes and hospital inpatients and to investigate the effect of dementia and cognitive impairment. Design Systematic review and meta-analyses of studies grouped by intervention and setting (hospital or care home). Meta-regression to investigate the effects of dementia and of study quality and design. Data sources Medline, CINAHL, Embase, PsychInfo, Cochrane Database, Clinical Trials Register, and hand searching of references from reviews and guidelines to January 2005. Results 1207 references were identified, including 115 systematic reviews, expert reviews, or guidelines. Of the 92 full papers inspected, 43 were included. Meta-analysis for multifaceted interventions in hospital (13 studies) showed a rate ratio of 0.82 (95% confidence interval 0.68 to 0.997) for falls but no significant effect on the number of fallers or fractures. For hip protectors in care homes (11 studies) the rate ratio for hip fractures was 0.67 (0.46 to 0.98), but there was no significant effect on falls and not enough studies on fallers. For all other interventions (multifaceted interventions in care homes; removal of physical restraints in either setting; fall alarm devices in either setting; exercise in care homes; calcium/vitamin D in care homes; changes in the physical environment in either setting; medication review in hospital) meta-analysis was either unsuitable because of insufficient studies or showed no significant effect on falls, fallers, or fractures, despite strongly positive results in some individual studies. Meta-regression showed no significant association between effect size and prevalence of dementia or cognitive impairment. Conclusion There is some evidence that multifaceted interventions in hospital reduce the number of falls and that use of hip protectors in care homes prevents hip fractures. There is insufficient evidence, however, for the effectiveness of other single interventions in hospitals or care homes or multifaceted interventions in care homes.

Journal ArticleDOI
01 Aug 2007-Tellus A
TL;DR: In this paper, the authors investigated the effect of tropical cyclones in different climate conditions in the Northern Hemisphere with the Max Planck Institute (MPI) coupled ECAM5/MPI-OM and atmosphere (ECHAM5) climate models and found that the intensity and size of the TC depend crucially on resolution with higher wind speed and smaller scales at higher resolutions.
Abstract: Tropical cyclones (TC) under different climate conditions in the Northern Hemisphere have been investigated with the Max Planck Institute (MPI) coupled (ECHAM5/MPI-OM) and atmosphere (ECHAM5) climate models. The intensity and size of the TC depend crucially on resolution with higher wind speed and smaller scales at the higher resolutions. The typical size of the TC is reduced by a factor of 2.3 from T63 to T319 using the distance of the maximum wind speed from the centre of the storm as a measure. The full three-dimensional structure of the storms becomes increasingly more realistic as the resolution is increased. For the T63 resolution, three ensemble runs are explored for the period 1860 until 2100 using the IPCC SRES scenario A1B and evaluated for three 30 yr periods at the end of the 19th, 20th and 21st century, respectively. While there is no significant change between the 19th and the 20th century, there is a considerable reduction in the number of the TC by some 20% in the 21st century, but no change in the number of the more intense storms. Reduction in the number of storms occurs in all regions. A single additional experiment at T213 resolution was run for the two latter 30-yr periods. The T213 is an atmospheric only experiment using the transient sea surface temperatures (SST) of the T63 resolution experiment. Also in this case, there is a reduction by some 10% in the number of simulated TC in the 21st century compared to the 20th century but a marked increase in the number of intense storms. The number of storms with maximum wind speeds greater than 50 m s−1 increases by a third. Most of the intensification takes place in the Eastern Pacific and in the Atlantic where also the number of storms more or less stays the same. We identify two competing processes effecting TC in a warmer climate. First, the increase in the static stability and the reduced vertical circulation is suggested to contribute to the reduction in the number of storms. Second, the increase in temperature and water vapour provide more energy for the storms so that when favourable conditions occur, the higher SST and higher specific humidity will contribute to more intense storms. As the maximum intensity depends crucially on resolution, this will require higher resolution to have its full effect. The distribution of storms between different regions does not, at first approximation, depend on the temperature itself but on the distribution of the SST anomalies and their influence on the atmospheric circulation. Two additional transient experiments at T319 resolution where run for 20 yr at the end of the 20th and 21st century, respectively, using the same conditions as in the T213 experiments. The results are consistent with the T213 study. The total number of TC were similar to the T213 experiment but were generally more intense. The change from the 20th to the 21st century was also similar with fewer TC in total but with more intense cyclones.

Journal ArticleDOI
11 Oct 2007-Nature
TL;DR: It is proposed that the frequency with which specific words are used in everyday language exerts a general and law-like influence on their rates of evolution, consistent with social models of word change that emphasize the role of selection and suggest that owing to the ways that humans use language, some words will evolve slowly and others rapidly across all languages.
Abstract: Greek speakers say "omicronupsilonrho", Germans "schwanz" and the French "queue" to describe what English speakers call a 'tail', but all of these languages use a related form of 'two' to describe the number after one. Among more than 100 Indo-European languages and dialects, the words for some meanings (such as 'tail') evolve rapidly, being expressed across languages by dozens of unrelated words, while others evolve much more slowly--such as the number 'two', for which all Indo-European language speakers use the same related word-form. No general linguistic mechanism has been advanced to explain this striking variation in rates of lexical replacement among meanings. Here we use four large and divergent language corpora (English, Spanish, Russian and Greek) and a comparative database of 200 fundamental vocabulary meanings in 87 Indo-European languages to show that the frequency with which these words are used in modern language predicts their rate of replacement over thousands of years of Indo-European language evolution. Across all 200 meanings, frequently used words evolve at slower rates and infrequently used words evolve more rapidly. This relationship holds separately and identically across parts of speech for each of the four language corpora, and accounts for approximately 50% of the variation in historical rates of lexical replacement. We propose that the frequency with which specific words are used in everyday language exerts a general and law-like influence on their rates of evolution. Our findings are consistent with social models of word change that emphasize the role of selection, and suggest that owing to the ways that humans use language, some words will evolve slowly and others rapidly across all languages.

Journal ArticleDOI
TL;DR: A dynamic and diverse transcriptional response to LPS in macrophages is revealed, involving both the induction and repression of gene expression in a time dependent manner and it is demonstrated that the LPS induced transcriptional responded in the THP-1 cell line is very similar to primary PBMC derived macrophage populations.
Abstract: Exposure of macrophages to bacterial products such as lipopolysaccharide (LPS) results in activation of the NF-κB transcription factor, which orchestrates a gene expression programme that underpins the macrophage-dependent immune response. These changes include the induction or repression of a wide range of genes that regulate inflammation, cell proliferation, migration and cell survival. This process is tightly regulated and loss of control is associated with conditions such as septic shock, inflammatory diseases and cancer. To study this response, it is important to have in vitro model systems that reflect the behaviour of cells in vivo. In addition, it is necessary to understand the natural differences that can occur between individuals. In this report, we have investigated and compared the LPS response in macrophage derived cell lines and peripheral blood mononuclear cell (PBMC) derived macrophages. Gene expression profiles were determined following LPS treatment of THP-1 cells for 1 and 4 hours. LPS significantly induced or repressed 72 out of 465 genes selected as being known or putative NF-κB target genes, which exhibited 4 temporal patterns of expression. Results for 34 of these genes, including several genes not previously identified as LPS target genes, were validated using real time PCR. A high correlation between microarray and real time PCR data was found. Significantly, the LPS induced expression profile of THP-1 cells, as determined using real time PCR, was found to be very similar to that of human PBMC derived macrophages. Interestingly, some differences were observed in the LPS response between the two donor PBMC macrophage populations. Surprisingly, we found that the LPS response in U937 cells was dramatically different to both THP-1 and PBMC derived macrophages. This study revealed a dynamic and diverse transcriptional response to LPS in macrophages, involving both the induction and repression of gene expression in a time dependent manner. Moreover, we demonstrated that the LPS induced transcriptional response in the THP-1 cell line is very similar to primary PBMC derived macrophages. Therefore, THP-1 cells represent a good model system for studying the mechanisms of LPS and NF-κB dependent gene expression.

Journal ArticleDOI
19 Jan 2007-Science
TL;DR: This work presents a generic risk assessment framework that accurately predicts each species' current conservation status and population growth rate associated with past changes in agriculture and demonstrates its value by assessing the potential impact on biodiversity of two controversial land uses, genetically modified herbicide-tolerant crops and agri-environment schemes.
Abstract: Sustainable development requires the reconciliation of demands for biodiversity conservation and increased agricultural production. Assessing the impact of novel farming practices on biodiversity and ecosystem services is fundamental to this process. Using farmland birds as a model system, we present a generic risk assessment framework that accurately predicts each species' current conservation status and population growth rate associated with past changes in agriculture. We demonstrate its value by assessing the potential impact on biodiversity of two controversial land uses, genetically modified herbicide-tolerant crops and agri-environment schemes. This framework can be used to guide policy and land management decisions and to assess progress toward sustainability targets.

Journal ArticleDOI
TL;DR: In this article, a statistical strategy for explaining how food purchasing intentions are influenced by different levels of risk perception and trust in food safety information is proposed, which includes trust and risk perception as additional explanatory factors.

Journal ArticleDOI
TL;DR: PND was associated with recurrent episodes of depression in the majority of cases, underlining the need for monitoring of this population beyond the postnatal period and consistent with theories that emphasise the primacy of early environmental exposures.

Journal ArticleDOI
TL;DR: For the low-latitude (40°S−40°N) mean, the models suggest a warming ratio of 1.51 ± 0.13, while recent observations suggest a ratio of 2.54 ± 1.09 as discussed by the authors.
Abstract: [1] Climate model simulations consistently show that in response to greenhouse gas forcing surface temperatures over land increase more rapidly than over sea. The enhanced warming over land is not simply a transient effect, since it is also present in equilibrium conditions. We examine 20 models from the IPCC AR4 database. The global land/sea warming ratio varies in the range 1.36–1.84, independent of global mean temperature change. In the presence of increasing radiative forcing, the warming ratio for a single model is fairly constant in time, implying that the land/sea temperature difference increases with time. The warming ratio varies with latitude, with a minimum in equatorial latitudes, and maxima in the subtropics. A simple explanation for these findings is provided, and comparisons are made with observations. For the low-latitude (40°S–40°N) mean, the models suggest a warming ratio of 1.51 ± 0.13, while recent observations suggest a ratio of 1.54 ± 0.09.

Journal ArticleDOI
TL;DR: The authors empirically examined the survival of international new ventures by comparing them with other sequential modes of international operations (e.g., acquisitions) and found that INVs have lower unconditional survival probabilities than other modes of foreign market entry.
Abstract: International new ventures (INVs) are a popular mode of entry into foreign markets. INVs, those companies that enter foreign markets at inception, often suffer the two liabilities of newness and foreignness, which may increase the odds of their failure. This paper empirically examines the survival of INVs by comparing them with other sequential modes of international operations (e.g., acquisitions). Data from 275 British firms show that INVs have lower unconditional survival probabilities than other modes of foreign market entry. Our analyses also show that differences in survival probabilities disappear when the firms’ competitive strategies are considered.

Journal ArticleDOI
TL;DR: There is a disparity between the importance of this topic and awareness of how mood affects, executive functions in the brain, yet the evidence indicates that even mild fluctuations in mood can have a significant influence on neural activation and cognition.

Journal ArticleDOI
01 Jul 2007-Appetite
TL;DR: There was widespread enthusiasm across socio-economic groups for local foods, with participants perceiving them as being of a higher quality than imported foods, and the main barriers preventing participants from buying more local products were price and inconvenience.

Journal ArticleDOI
TL;DR: In this paper, the influence of a substantial weakening of the Atlantic meridional overturning circulation (AMOC) on the tropical Pacific climate mean state, the annual cycle, and ENSO variability are studied using five different coupled general circulation models (CGCMs).
Abstract: The influences of a substantial weakening of the Atlantic meridional overturning circulation (AMOC) on the tropical Pacific climate mean state, the annual cycle, and ENSO variability are studied using five different coupled general circulation models (CGCMs). In the CGCMs, a substantial weakening of the AMOC is induced by adding freshwater flux forcing in the northern North Atlantic. In response, the well-known surface temperature dipole in the low-latitude Atlantic is established, which reorganizes the large-scale tropical atmospheric circulation by increasing the northeasterly trade winds. This leads to a southward shift of the intertropical convergence zone (ITCZ) in the tropical Atlantic and also the eastern tropical Pacific. Because of evaporative fluxes, mixing, and changes in Ekman divergence, a meridional temperature anomaly is generated in the northeastern tropical Pacific, which leads to the development of a meridionally symmetric thermal background state. In four out of five CGCMs this leads to a substantial weakening of the annual cycle in the eastern equatorial Pacific and a subsequent intensification of ENSO variability due to nonlinear interactions. In one of the CGCM simulations, an ENSO intensification occurs as a result of a zonal mean thermocline shoaling. Analysis suggests that the atmospheric circulation changes forced by tropical Atlantic SSTs can easily influence the large-scale atmospheric circulation and hence tropical eastern Pacific climate. Furthermore, it is concluded that the existence of the present-day tropical Pacific cold tongue complex and the annual cycle in the eastern equatorial Pacific are partly controlled by the strength of the AMOC. The results may have important implications for the interpretation of global multidecadal variability and paleo-proxy data.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the ethnic and gender diversity of the corporate board of UK companies, placing particular emphasis on links to board size and industry characteristics, and found that a close proximity to final consumers plays a more significant role in shaping board diversity than does the female presence among the industry workforce.
Abstract: This paper investigates the ethnic and gender diversity of the corporate board of UK companies, placing particular emphasis on links to board size and industry characteristics. We employ a novel dataset that covers a large sample of UK PLCs and describes a director’s gender, ethnicity and position held. We find both ethnic and gender diversity to be very limited, and that diversity is somewhat less pronounced among executive positions. We find significant cross-sector variation in gender diversity, with an above average prevalence of women in Retail, Utilities, Media and Banking, while such variation in ethnic diversity is considerably less pronounced. Our evidence suggests that a close proximity to final consumers plays a more significant role in shaping board diversity than does the female presence among the industry’s workforce. We argue that this shows that board diversity is influenced by a firm’s external business environment and particularly an imperative to reflect corresponding diversity among its customers.

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the importance of building local and regional entrepreneurial networks in order to improve economic performance and regeneration, however, there are many types of network, and diffe...
Abstract: Governments have invested heavily in building local and regional entrepreneurial networks in order improve economic performance and regeneration. However, there are many types of network, and diffe...

Journal ArticleDOI
TL;DR: In this paper, the authors analyse the winter and summer climatic signal following 15 major tropical volcanic eruptions over the last half millennium based on multi-proxy reconstructions for Europe and find significant continental scale summer cooling and somewhat drier conditions over Central Europe.
Abstract: [1] We analyse the winter and summer climatic signal following 15 major tropical volcanic eruptions over the last half millennium based on multi-proxy reconstructions for Europe. During the first and second post-eruption years we find significant continental scale summer cooling and somewhat drier conditions over Central Europe. In the Northern Hemispheric winter the volcanic forcing induces an atmospheric circulation response that significantly follows a positive NAO state connected with a significant overall warm anomaly and wetter conditions over Northern Europe. Our findings compare well with GCM studies as well as observational studies, which mainly cover the substantially shorter instrumental period and thus include a limited set of major eruptions.

Journal ArticleDOI
TL;DR: In this article, the authors used the daily paired instantaneous P and flow data for 17 UK research catchments covering a total of 39 water years (WY) to explore the nature and extent of the observational error associated with nutrient flux estimates based on partial fractions and infrequent sampling.

Journal ArticleDOI
07 Nov 2007-PLOS ONE
TL;DR: This work investigates the quality and coverage of data digitally available, from the perspective of a biologist seeking distribution data for spatial analysis on a global scale, and presents an example of automatic verification of geographic data using distributions from the International Legume Database and Information Service to test empirically, issues of geographic coverage and accuracy.
Abstract: There is a concerted global effort to digitize biodiversity occurrence data from herbarium and museum collections that together offer an unparalleled archive of life on Earth over the past few centuries. The Global Biodiversity Information Facility provides the largest single gateway to these data. Since 2004 it has provided a single point of access to specimen data from databases of biological surveys and collections. Biologists now have rapid access to more than 120 million observations, for use in many biological analyses. We investigate the quality and coverage of data digitally available, from the perspective of a biologist seeking distribution data for spatial analysis on a global scale. We present an example of automatic verification of geographic data using distributions from the International Legume Database and Information Service to test empirically, issues of geographic coverage and accuracy. There are over 1/2 million records covering 31% of all Legume species, and 84% of these records pass geographic validation. These data are not yet a global biodiversity resource for all species, or all countries. A user will encounter many biases and gaps in these data which should be understood before data are used or analyzed. The data are notably deficient in many of the world's biodiversity hotspots. The deficiencies in data coverage can be resolved by an increased application of resources to digitize and publish data throughout these most diverse regions. But in the push to provide ever more data online, we should not forget that consistent data quality is of paramount importance if the data are to be useful in capturing a meaningful picture of life on Earth.

Journal ArticleDOI
TL;DR: There is a need for more studies on earthworm species other than Eisenia fetida in order to apply the large existing database on this earthworm to other, soil dwelling species.