scispace - formally typeset
Search or ask a question

Showing papers by "University of Rennes published in 2004"


Journal ArticleDOI
TL;DR: Analysis of the hydration process by solid-state NMR has clearly indicated that the trapped water molecules interact with the carboxylate groups through hydrogen bonds, but do not affect the hydroxyl species bridging the aluminum atoms.
Abstract: Aluminum 1,4-benzenedicarboxylate Al(OH)[O2CC6H4CO2]⋅ [HO2CC6H4CO2H]0.70 or MIL-53 as (Al) has been hydrothermally synthesized by heating a mixture of aluminum nitrate, 1,4-benzenedicarboxylic acid, and water, for three days at 220 °C. Its 3 D framework is built up of infinite trans chains of corner-sharing AlO4(OH)2 octahedra. The chains are interconnected by the 1,4-benzenedicarboxylate groups, creating 1 D rhombic-shaped tunnels. Disordered 1,4-benzenedicarboxylic acid molecules are trapped inside these tunnels. Their evacuation upon heating, between 275 and 420 °C, leads to a nanoporous open-framework (MIL-53 ht (Al) or Al(OH)[O2CC6H4CO2]) with empty pores of diameter 8.5 A. This solid exhibits a Langmuir surface area of 1590(1) m2 g−1 together with a remarkable thermal stability, since it starts to decompose only at 500 °C. At room temperature, the solid reversibly absorbs water in its tunnels, causing a very large breathing effect and shrinkage of the pores. Analysis of the hydration process by solid-state NMR (1H, 13C, 27Al) has clearly indicated that the trapped water molecules interact with the carboxylate groups through hydrogen bonds, but do not affect the hydroxyl species bridging the aluminum atoms. The hydrogen bonds between water and the oxygen atoms of the framework are responsible for the contraction of the rhombic channels. The structures of the three forms have been determined by means of powder X-ray diffraction analysis. Crystal data for MIL-53 as (Al) are as follows: orthorhombic system, Pnma (no. 62), a = 17.129(2), b = 6.628(1), c = 12.182(1) A; for MIL-53 ht (Al), orthorhombic system, Imma (no. 74), a = 6.608(1), b = 16.675(3), c = 12.813(2) A; for MIL-53 lt (Al), monoclinic system, Cc (no. 9), a = 19.513(2), b = 7.612(1), c = 6.576(1) A, β = 104.24(1)°.

1,737 citations


Journal ArticleDOI
TL;DR: In this article, the DICVOL04 algorithm was extended to include a tolerance to the presence of impurity (or inaccurately measured) diffraction lines, a refinement of the zero-point position, a reviewing of all input lines from the solution found from, generally, the first 20 lines, and a cell analysis, based on the concept of the reduced cell, to identify equivalent monoclinic and triclinic solutions.
Abstract: The efficiency of the successive dichotomy method for powder diffraction pattern indexing [Louer & Louer (1972). J. Appl. Cryst. 5, 271–275] has been proved over more than 30 years of usage. Features implemented in the new version of the computer program DICVOL04 include (i) a tolerance to the presence of impurity (or inaccurately measured) diffraction lines, (ii) a refinement of the `zero-point' position, (iii) a reviewing of all input lines from the solution found from, generally, the first 20 lines, (iv) a cell analysis, based on the concept of the reduced cell, to identify equivalent monoclinic and triclinic solutions, and (v) an optional analysis of input powder data to detect the presence of a significant `zero-point' offset. New search strategies have also been introduced, e.g. each crystal system is scanned separately, within the input volume limits, to limit the risk of missing a solution characterized by a metric lattice singularity. The default values in the input file have been extended to 25 A for the linear parameters and 2500 A3 for the cell volume. The search is carried out exhaustively within the input parameter limits and the absolute error on peak position measurements. Many tests with data from the literature and from powder data of pharmaceutical materials, collected with the capillary technique and laboratory monochromatic X-rays, have been performed with a high success rate, covering all crystal symmetries from cubic to triclinic. Some examples reported as `difficult' cases are also discussed. Additionally, a few recommendations for the correct practice of powder pattern indexing are reported.

1,284 citations


Journal ArticleDOI
TL;DR: The positional cloning of the locus associated with juvenile hemochromatosis is reported and the identification of a new gene crucial to iron metabolism is identified, now called HFE2, whose protein product the authors call hemojuvelin.
Abstract: Juvenile hemochromatosis is an early-onset autosomal recessive disorder of iron overload resulting in cardiomyopathy, diabetes and hypogonadism that presents in the teens and early 20s (refs. 1,2). Juvenile hemochromatosis has previously been linked to the centromeric region of chromosome 1q (refs. 3–6), a region that is incomplete in the human genome assembly. Here we report the positional cloning of the locus associated with juvenile hemochromatosis and the identification of a new gene crucial to iron metabolism. We finely mapped the recombinant interval in families of Greek descent and identified multiple deleterious mutations in a transcription unit of previously unknown function (LOC148738), now called HFE2, whose protein product we call hemojuvelin. Analysis of Greek, Canadian and French families indicated that one mutation, the amino acid substitution G320V, was observed in all three populations and accounted for two-thirds of the mutations found. HFE2 transcript expression was restricted to liver, heart and skeletal muscle, similar to that of hepcidin, a key protein implicated in iron metabolism7,8,9. Urinary hepcidin levels were depressed in individuals with juvenile hemochromatosis, suggesting that hemojuvelin is probably not the hepcidin receptor. Rather, HFE2 seems to modulate hepcidin expression.

966 citations


Journal ArticleDOI
TL;DR: CePt3Si is a novel heavy fermion superconductor, crystallizing in the CePt 3B structure as a tetragonally distorted low symmetry variant of the AuCu3 structure type.
Abstract: CePt3Si is a novel heavy fermion superconductor, crystallizing in the CePt3B structure as a tetragonally distorted low symmetry variant of the AuCu3 structure type. CePt3Si exhibits antiferromagnetic order at T(N) approximately 2.2 K and enters into a heavy fermion superconducting state at T(c) approximately 0.75 K. Large values of H(')(c2) approximately -8.5 T/K and H(c2)(0) approximately 5 T refer to heavy quasiparticles forming Cooper pairs. Hitherto, CePt3Si is the first heavy fermion superconductor without a center of symmetry.

896 citations


Journal ArticleDOI
J.-J. Fuchs1
TL;DR: The purpose of this contribution is to generalize some recent results on sparse representations of signals in redundant bases and give a sufficient condition for the unique sparsest solution to be the unique solution to both a linear program or a parametrized quadratic program.
Abstract: The purpose of this contribution is to generalize some recent results on sparse representations of signals in redundant bases. The question that is considered is the following: given a matrix A of dimension (n,m) with m>n and a vector b=Ax, find a sufficient condition for b to have a unique sparsest representation x as a linear combination of columns of A. Answers to this question are known when A is the concatenation of two unitary matrices and either an extensive combinatorial search is performed or a linear program is solved. We consider arbitrary A matrices and give a sufficient condition for the unique sparsest solution to be the unique solution to both a linear program or a parametrized quadratic program. The proof is elementary and the possibility of using a quadratic program opens perspectives to the case where b=Ax+e with e a vector of noise or modeling errors.

609 citations


Journal ArticleDOI
TL;DR: An unsupervised terrain and land-use classification algorithm using polarimetric synthetic aperture radar data using a combination of a scattering model-based decomposition developed by Freeman and Durden and the maximum-likelihood classifier based on the complex Wishart distribution is proposed.
Abstract: In this paper, we proposed an unsupervised terrain and land-use classification algorithm using polarimetric synthetic aperture radar data. Unlike other algorithms that classify pixels statistically and ignore their scattering characteristics, this algorithm not only uses a statistical classifier, but also preserves the purity of dominant polarimetric scattering properties. This algorithm uses a combination of a scattering model-based decomposition developed by Freeman and Durden and the maximum-likelihood classifier based on the complex Wishart distribution. The first step is to apply the Freeman and Durden decomposition to divide pixels into three scattering categories: surface scattering, volume scattering, and double-bounce scattering. To preserve the purity of scattering characteristics, pixels in a scattering category are restricted to be classified with other pixels in the same scattering category. An efficient and effective class initialization scheme is also devised to initially merge clusters from many small clusters in each scattering category by applying a merge criterion developed based on the Wishart distance measure. Then, the iterative Wishart classifier is applied. The stability in convergence is much superior to that of the previous algorithm using the entropy/anisotropy/Wishart classifier. Finally, an automated color rendering scheme is proposed, based on the classes' scattering category to code the pixels to resemble their natural color. This algorithm is also flexible and computationally efficient. The effectiveness of this algorithm is demonstrated using the Jet Propulsion Laboratory's AIRSAR and the German Aerospace Center's (DLR) E-SAR L-band polarimetric synthetic aperture radar images.

448 citations


Journal ArticleDOI
TL;DR: The results of both a line-broadening study on a ceria sample and a size-strain round robin on diffraction line broadening methods, which was sponsored by the Commission on Powder Diffraction of the International Union of Crystallography, are presented in this paper.
Abstract: The results of both a line-broadening study on a ceria sample and a size–strain round robin on diffraction line-broadening methods, which was sponsored by the Commission on Powder Diffraction of the International Union of Crystallography, are presented. The sample was prepared by heating hydrated ceria at 923 K for 45 h. Another ceria sample was prepared to correct for the effects of instrumental broadening by annealing commercially obtained ceria at 1573 K for 3 h and slowly cooling it in the furnace. The diffraction measurements were carried out with two laboratory and two synchrotron X-ray sources, two constant-wavelength neutron and a time-of-flight (TOF) neutron source. Diffraction measurements were analyzed by three methods: the model assuming a lognormal size distribution of spherical crystallites, Warren–Averbach analysis and Rietveld refinement. The last two methods detected a relatively small strain in the sample, as opposed to the first method. Assuming a strain-free sample, the results from all three methods agree well. The average real crystallite size, on the assumption of a spherical crystallite shape, is 191 (5) A. The scatter of results given by different instruments is relatively small, although significantly larger than the estimated standard uncertainties. The Rietveld refinement results for this ceria sample indicate that the diffraction peaks can be successfully approximated with a pseudo-Voigt function. In a common approximation used in Rietveld refinement programs, this implies that the size-broadened profile cannot be approximated by a Lorentzian but by a full Voigt or pseudo-Voigt function. In the second part of this paper, the results of the round robin on the size–strain line-broadening analysis methods are presented, which was conducted through the participation of 18 groups from 12 countries. Participants have reported results obtained by analyzing data that were collected on the two ceria samples at seven instruments. The analysis of results received in terms of coherently diffracting, both volume-weighted and area-weighted apparent domain size are reported. Although there is a reasonable agreement, the reported results on the volume-weighted domain size show significantly higher scatter than those on the area-weighted domain size. This is most likely due to a significant number of results reporting a high value of strain. Most of those results were obtained by Rietveld refinement in which the Gaussian size parameter was not refined, thus erroneously assigning size-related broadening to other effects. A comparison of results with the average of the three-way comparative analysis from the first part shows a good agreement.

419 citations



Journal ArticleDOI
TL;DR: It is suggested that in a fragmented woodland area roe deer dispersal is strongly linked to wooded structures and hence that gene flow within the roe Deer population is influenced by the connectivity of the landscape.
Abstract: Changes in agricultural practices and forest fragmentation can have a dramatic effect on landscape connectivity and the dispersal of animals, potentially reducing gene flow within populations. In this study, we assessed the influence of woodland connectivity on gene flow in a traditionally forest-dwelling species--the European roe deer--in a fragmented landscape. From a sample of 648 roe deer spatially referenced within a study area of 55 x 40 km, interindividual genetic distances were calculated from genotypes at 12 polymorphic microsatellite loci. We calculated two geographical distances between each pair of individuals: the Euclidean distance (straight line) and the 'least cost distance' (the trajectory that maximizes the use of wooded corridors). We tested the correlation between genetic pairwise distances and the two types of geographical pairwise distance using Mantel tests. The correlation was better using the least cost distance, which takes into account the distribution of wooded patches, especially for females (the correlation was stronger but not significant for males). These results suggest that in a fragmented woodland area roe deer dispersal is strongly linked to wooded structures and hence that gene flow within the roe deer population is influenced by the connectivity of the landscape.

379 citations


Journal ArticleDOI
TL;DR: The postcollisional magmatism of the Junggar Terrane is characterized by intrusion of large amounts of granitoids and minor basic/ultrabasic rocks as mentioned in this paper.

369 citations


Journal ArticleDOI
23 Dec 2004-Nature
TL;DR: The complement of Drosophila protein kinases (kinome) is tested for cell cycle functions after gene silencing by RNA-mediated interference, revealing the inter-digitation of systems that monitor cellular physiology, cell size, cellular stress and signalling processes with the basic cell cycle regulatory machinery.
Abstract: Cycles of protein phosphorylation are fundamental in regulating the progression of the eukaryotic cell through its division cycle. Here we test the complement of Drosophila protein kinases (kinome) for cell cycle functions after gene silencing by RNA-mediated interference. We observed cell cycle dysfunction upon downregulation of 80 out of 228 protein kinases, including most kinases that are known to regulate the division cycle. We find new enzymes with cell cycle functions; some of these have family members already known to phosphorylate microtubules, actin or their associated proteins. Additionally, depletion of several signalling kinases leads to specific mitotic aberrations, suggesting novel roles for familiar enzymes. The survey reveals the inter-digitation of systems that monitor cellular physiology, cell size, cellular stress and signalling processes with the basic cell cycle regulatory machinery.

Journal ArticleDOI
01 Mar 2004-Oikos
TL;DR: A number of unique features of aquatic experimental systems are focused on, an expansion to the scope of diversity facets to be considered when assessing the functional consequences of changes in biodiversity are proposed and a hierarchical classification scheme of ecosystem functions and their corresponding response variables is outlined.
Abstract: Recent experiments, mainly in terrestrial environments, have provided evidence of the functional importance of biodiversity to ecosystem processes and properties. Compared to terrestrial systems, aquatic ecosystems are characterised by greater propagule and material exchange, often steeper physical and chemical gradients, more rapid biological processes and, in marine systems, higher metazoan phylogenetic diversity. These characteristics limit the potential to transfer conclusions derived from terrestrial experiments to aquatic ecosystems whilst at the same time provide opportunities for testing the general validity of hypotheses about effects of biodiversity on ecosystem functioning. Here, we focus on a number of unique features of aquatic experimental systems, propose an expansion to the scope of diversity facets to be considered when assessing the functional consequences of changes in biodiversity and outline a hierarchical classification scheme of ecosystem functions and their corresponding response variables. We then briefly highlight some recent controversial and newly emerging issues relating to biodiversity-ecosystem functioning relationships. Based on lessons learnt from previous experimental and theoretical work, we finally present four novel experimental designs to address largely unresolved questions about biodiversity-ecosystem functioning relationships. These include (1) investigating the effects of non-random species loss through the manipulation of the order and magnitude of such loss using dilution experiments; (2) combining factorial manipulation of diversity in interconnected habitat patches to test the additivity of ecosystem functioning between habitats; (3) disentangling the impact of local processes from the effect of ecosystem openness via factorial manipulation of the rate of recruitment and biodiversity within patches and within an available propagule pool; and (4) addressing how non-random species extinction following sequential exposure to different stressors may affect ecosystem functioning. Implementing these kinds of experimental designs in a variety of systems will, we believe, shift the focus of investigations from a species richness-centred approach to a broader consideration of the multifarious aspects of biodiversity that may well be critical to understanding effects of biodiversity changes on overall ecosystem functioning and to identifying some of the potential underlying mechanisms involved.

Journal ArticleDOI
TL;DR: In this paper, the Fokker-Planck equation with a confining or anti-confining potential was considered and the rate of convergence to equilibrium was analyzed in terms of the lowest positive eigenvalue of the corresponding Witten Laplacian.
Abstract: We consider the Fokker-Planck equation with a confining or anti-confining potential which behaves at infinity like a possibly high-degree homogeneous function. Hypoellipticity techniques provide the well-posedness of the weak Cauchy problem in both cases as well as instantaneous smoothing and exponential trend to equilibrium. Lower and upper bounds for the rate of convergence to equilibrium are obtained in terms of the lowest positive eigenvalue of the corresponding Witten Laplacian, with detailed applications.

Journal ArticleDOI
TL;DR: Results from these small-scale, low-diversity manipulative studies indicate that the effects of changes in biodiversity are highly variable over space and time and frequently depend on specific biological traits or functional roles of individual species.
Abstract: Empirical studies investigating the role of species diversity in sustaining ecosystem processes have focused primarily on terrestrial plant and soil communities. Eighteen representative studies drawn from post-1999 literature specifically examined how changes in biodiversity affect benthic ecosystem processes. Results from these small-scale, low-diversity manipulative studies indicate that the effects of changes in biodiversity (mostly synonymous with local species richness) are highly variable over space and time and frequently depend on specific biological traits or functional roles of individual species. Future studies of freshwater and marine ecosystems will require the development of new experimental designs at larger spatial and temporal scales. Furthermore, to successfully integrate field and laboratory studies, the derivation of realistic models and appropriate experiments will require approaches different from those already used in terrestrial systems.

Journal ArticleDOI
TL;DR: In this article, the authors proposed accurate codification for the frequencies of false alleles and allelic dropouts in hair or faeces-based population genetics studies and modelled the bias associated with erroneous methods.
Abstract: The use of noninvasively collected samples greatly expands the range of ecological issues that may be investigated through population genetics. Furthermore, the difficulty of obtaining reliable genotypes with samples containing low quantities of amplifiable DNA may be overcome by designing optimal genotyping schemes. Such protocols are mainly determined by the rates of genotyping errors caused by false alleles and allelic dropouts. These errors may not be avoided through laboratory procedure and hence must be quantified. However, the definition of genotyping error rates remains elusive and various estimation methods have been reported in the literature. In this paper we proposed accurate codification for the frequencies of false alleles and allelic dropouts. We then reviewed other estimation methods employed in hair- or faeces-based population genetics studies and modelled the bias associated with erroneous methods. It is emphasized that error rates may be substantially underestimated when using an erroneous approach. Genotyping error rates may be important determinants of the outcome of noninvasive studies and hence should be carefully computed and reported.

Journal ArticleDOI
TL;DR: In this article, the authors presented new petrographic, geochemical and Sr-Nd isotopic analyses on Phanerozoic granitoids emplaced in west-central Mongolia.

Journal ArticleDOI
TL;DR: It is demonstrated that the CDC25B phosphatase, an activator of cyclin dependent kinases at mitosis, is phosphorylated both in vitro and in vivo by Aurora-A on serine 353 and that this phosphorylation form ofCDC25B is located at the centrosome during mitosis.
Abstract: Aurora-A protein kinase, which is the product of an oncogene, is required for the assembly of a functional mitotic apparatus and the regulation of cell ploidy. Overexpression of Aurora-A in tumour cells has been correlated with cancer susceptibility and poor prognosis. Aurora-A activity is required for the recruitment of CDK1-cyclin B1 to the centrosome prior to its activation and the commitment of the cell to mitosis. In this report, we demonstrate that the CDC25B phosphatase, an activator of cyclin dependent kinases at mitosis, is phosphorylated both in vitro and in vivo by Aurora-A on serine 353 and that this phosphorylated form of CDC25B is located at the centrosome during mitosis. Knockdown experiments by RNAi confirm that the centrosome phosphorylation of CDC25B on S353 depends on Aurora-A kinase. Microinjection of antibodies against phosphorylated S353 results in a mitotic delay whilst overexpression of a S353 phosphomimetic mutant enhances the mitotic inducing effect of CDC25B. Our results demonstrate that Aurora-A phosphorylates CDC25B in vivo at the centrosome during mitosis. This phosphorylation might locally participate in the control of the onset of mitosis. These findings re-emphasise the role of the centrosome as a functional integrator of the pathways contributing to the triggering of mitosis.

Journal ArticleDOI
TL;DR: In this article, a review of the use of group 3 organometallic catalysts for poly(α-olefin) polymerization is presented, which describes the evolution from initially designed neutral alkyl (hydrido) bis(cyclopentadienyl) complexes of trivalent lanthanides towards ansa-bridged ligand systems, "constrained geometry" hemi-metallocenes, divalent lanthanidocenes, and the most recent cyclopentadiyl-free systems.

Journal ArticleDOI
TL;DR: In this article, the spectral analysis of biomolecules present in human lung cells by measuring their infrared signatures was performed using 77Se NMR spectroscopy, which is a useful tool for checking the local environment of the Se atoms.
Abstract: Compared to oxide-based glasses, vitreous materials involving chalcogens form a rather new family of glasses which have received attention, mainly because of their transmission in the mid-infrared. Indeed as low phonon compounds, these heavy-anion glasses allow the fabrication of molded optics for infrared cameras as well as infrared fibers operating in a large spectral range. These waveguides, when correctly tapered, allows the development of a new generation of sensitive evanescent-wave optical sensors which have been used for biomedical applications. Here we will focus on the spectral analysis of biomolecules present in human lung cells by measuring their infrared signatures. Because they contain heavy polarizable anions as well as lone-pair electrons, these glasses exhibit very large non-linear properties compared to silica and are candidates for fast optical switching and signal regeneration in telecom. Due to the technological interest in chalcogenide glasses, more information is needed on their structural organization and 77Se NMR spectroscopy appears to be a useful tool for checking the local environment of the Se atoms.

Journal ArticleDOI
TL;DR: Polymerization of racemic lactide initated by alkyl- and amido-yttrium complexes of a non-chiral tetradentate alkoxy-amino-bis(phenolate) ligand proceeds rapidly, in a controlled manner, to give heterotactic-rich polylactic acid.

Journal ArticleDOI
TL;DR: Novel octupolar fluorophores derived from the symmetrical functionalization of a triphenylamine core with strong acceptor peripheral groups via phenylene-ethynylene linkers have been synthesized and shown to exhibit high fluorescence quantum yields, very large TPA cross-sections in the red-NIR region, and suitable photostability.

Journal ArticleDOI
TL;DR: This paper intends to summarize the current situation with special emphasis on interspecies comparisons which provide insights into the possible evolutionary mechanisms leading to the diversification of GnRH functions.

Journal ArticleDOI
TL;DR: This work reviews how alterations in regulatory sequences, RNA‐BPs, or in upstream signalling pathways affect the stability and/or translational efficiency of mRNAs encoding proto‐oncogenes, cytokines, cell cycle regulators and other regulatory proteins to promote tumorigenesis and cancer progression.

Journal ArticleDOI
TL;DR: How recent molecular approaches have helped the understanding of the past and recent reticulate history of species is examined, with special focus on allopolyploid speciation.
Abstract: Summary Hybridization and polyploidy are well illustrated in the genus Spartina. This paper examines how recent molecular approaches have helped our understanding of the past and recent reticulate history of species, with special focus on allopolyploid speciation. Spartina species are tetraploid, hexaploid or dodecaploid perennials, most of them being native to the New World. The molecular phylogeny indicates an ancient split between the tetraploid and the hexaploid species, with S. argentinensis as sister to the hexaploid lineage. Recent hybridization and polyploidization events involved hexaploid species, resulting from introductions of the east-American S. alterniflora. In California, ongoing hybridizations with its sister species S. foliosa result in introgressant hybrid swarms. In Europe, hybridization with S. maritima resulted in S. × neyrautii (France) and S. × townsendii (England), with. S. alterniflora as the maternal parent. The allopolyploid S. anglica resulted from chromosome doubling of S. × townsendii. This young allopolyploid contains divergent homoeologous subgenomes that have not undergone significant changes since their reunion. Hybridization, rather than genome duplication, appears to have shaped the allopolyploid genome at both the structural and epigenetic levels.

Journal ArticleDOI
01 Mar 2004-Oikos
TL;DR: A simple patch-dynamics model is developed to examine some of the scale-dependent and independent qualities of the diversity-productivity relationship and concludes that the relative control of community structure by local versus regional processes may be a primary determinant of the Diversity-Productivity relationship in natural ecosystems.
Abstract: The number of studies examining how species diversity influences the productivity of ecosystems has increased dramatically in the past decade as concern about global loss of biodiversity has intensified. Research to date has greatly improved our understanding of how, when, and why species loss alters primary production in ecosystems. However, because experiments have been performed at rather small spatial and short temporal scales, it is unclear whether conclusions can be readily extrapolated to the broader scales at which natural communities are most likely to influence ecosystem functioning. Here we develop a simple patch-dynamics model to examine some of the scale-dependent and independent qualities of the diversity-productivity relationship. We first simulate a typical diversity-productivity experiment and show that the influence of species richness on productivity is temporally dynamic, growing stronger through successional time. This holds true irrespective of whether resource partitioning or a sampling effect is the underlying mechanism. We then increase the spatial scale of the simulation from individual patches to a region consisting of many patch types. Results suggest that the diversity-productivity relationship is not influenced by spatial scale per se, but that the mechanism producing the relationship can change from sampling effects within individual patches to resource partitioning across patch types composing the region. This change occurs even though model dynamics are the same at both scales, suggesting that sampling effects and resource partitioning can represent different descriptions of the same biological processes operating concurrently at differing scales of observation. Lastly, we incorporate regional processes of dispersal and disturbance into the model and show that these processes can amplify the effect of species richness on productivity, resulting in patterns not easily anticipated from experiments. We conclude that the relative control of community structure by local versus regional processes may be a primary determinant of the diversity-productivity relationship in natural ecosystems. Therefore, past experiments having focused only on local processes might not reflect patterns and processes underlying diversity-productivity relationships in communities where disturbance and dispersal regulate species biomasses.

Journal ArticleDOI
TL;DR: This review suggests approaches to improve the inventory of diversity and functions of in situ plant-associated microorganisms.

Journal ArticleDOI
TL;DR: Second-harmonic generation is capable of imaging up to ∼400 μm deep into intact tissue with submicron resolution and little out-of-focus photodamage or bleaching, its ability to record fast electrical activity should prove valuable to future electrophysiology studies.
Abstract: Nonlinear microscopy has proven to be essential for neuroscience investigations of thick tissue preparations. However, the optical recording of fast (∼1 msec) cellular electrical activity has never until now been successfully combined with this imaging modality. Through the use of second-harmonic generation microscopy of primary Aplysia neurons in culture labeled with 4-[4-(dihexylamino)phenyl][ethynyl]-1-(4-sulfobutyl)pyridinium (inner salt), we optically recorded action potentials with 0.833 msec temporal and 0.6 μm spatial resolution on soma and neurite membranes. Second-harmonic generation response as a function of change in membrane potential was found to be linear with a signal change of ∼6%/100 mV. The signal-to-noise ratio was ∼1 for single-trace action potential recordings but was readily increased to ∼6–7 with temporal averaging of ∼50 scans. Photodamage was determined to be negligible by observing action potential characteristics, cellular resting potential, and gross cellular morphology during and after laser illumination. High-resolution (micrometer scale) optical recording of membrane potential activity by previous techniques has been limited to imaging depths an order of magnitude less than nonlinear methods. Because second-harmonic generation is capable of imaging up to ∼400 μm deep into intact tissue with submicron resolution and little out-of-focus photodamage or bleaching, its ability to record fast electrical activity should prove valuable to future electrophysiology studies.

Journal ArticleDOI
TL;DR: The derived structure-property relationships are promising for designing new generations of molecules relying on the diaroyl(methanato)boron difluoride backbone.
Abstract: This paper evaluates the use of diaroyl(methanato)boron difluoride compounds for designing efficient fluorescent probes through two-photon absorption. Three different pathways allowing for the syntheses of symmetrical and dissymmetrical molecules are reported. The stable diaroyl(methanato)boron difluoride derivatives can be easily obtained in good yields. They exhibit a large one-photon absorption that is easily tuned in the near-UV range. Their strong fluorescence emission covers the whole visible domain. In addition to these attractive linear properties, several diaroyl(methanato)boron difluoride derivatives possess significant cross sections for two-photon absorption. The derived structure–property relationships are promising for designing new generations of molecules relying on the diaroyl(methanato)boron difluoride backbone.

Journal ArticleDOI
TL;DR: It is shown that the hepatic expression of these zfER genes responds differently to estradiol (E2) and the two ERbeta forms recently characterized in teleost fish could have partially distinct and not redundant functions.
Abstract: We have previously cloned and characterized three estrogen receptors (ER) in the zebrafish (zfERalpha, zfERbeta1 and zfERbeta2). We have also shown that they are functional in vitro and exhibit a distinct expression pattern, although partially overlapping, in the brain of zebrafish. In this paper, we have shown that the hepatic expression of these zfER genes responds differently to estradiol (E2). In fact, a 48-h direct exposure of zebrafish to E2 resulted in a strong stimulation of zfERalpha gene expression while zfERbeta1 gene expression was markedly reduced and zfERbeta2 remained virtually unchanged. To establish the potential implication of each zfER in the E2 upregulation of the zfERalpha gene, the promoter region of this gene was isolated and characterized. Transfection experiments with promoter-luciferase reporter constructs together with different zfER expression vectors were carried out in different cell contexts. The data showed that in vivo E2 upregulation of the zfERalpha gene requires ERalpha itself and a conserved transcription unit sequence including at least an imperfect estrogen-responsive element (ERE) and an AP-1/ERE half site at the proximal transcription initiation site. Interestingly, although in the presence of E2 zfERalpha was the most potent at inducing the expression of its own gene, the effect of E2 mediated by zfERbeta2 represented 50% of the zfERalpha activity. In contrast, zfERbeta1 was unable to upregulate the zfERalpha gene whereas this receptor form was able to tightly bind E2 and activate a reporter plasmid containing a consensus ERE. Altogether, these results indicated that the two ERbeta forms recently characterized in teleost fish could have partially distinct and not redundant functions.

Proceedings ArticleDOI
25 Apr 2004
TL;DR: Experimental evaluations showed that participants could successfully identify macroscopic textures such as bumps and holes, by simply using the variations of the motion of the cursor, in desktop applications without a haptic interface.
Abstract: We present a new interaction technique to simulate textures in desktop applications without a haptic interface. The proposed technique consists in modifying the motion of the cursor on the computer screen - i.e. the Control/Display ratio. Assuming that the image displayed on the screen corresponds to a top view of the texture, an acceleration (or deceleration) of the cursor indicates a negative (or positive) slope of the texture. Experimental evaluations showed that participants could successfully identify macroscopic textures such as bumps and holes, by simply using the variations of the motion of the cursor. Furthermore, the participants were able to draw the different profiles of bumps and holes which were simulated, correctly. These results suggest that our technique enabled the participants to successfully conjure a mental image of the topography of the macroscopic textures. Applications for this technique are: the feeling of images (pictures, drawings) or GUI components (windows' edges, buttons), the improvement of navigation, or the visualization of scientific data.