scispace - formally typeset
Search or ask a question

Showing papers by "University of Rhode Island published in 2021"


Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1428 moreInstitutions (155)
TL;DR: In this article, the population of 47 compact binary mergers detected with a false-alarm rate of 0.614 were dynamically assembled, and the authors found that the BBH rate likely increases with redshift, but not faster than the star formation rate.
Abstract: We report on the population of 47 compact binary mergers detected with a false-alarm rate of 0.01 are dynamically assembled. Third, we estimate merger rates, finding RBBH = 23.9-+8.614.3 Gpc-3 yr-1 for BBHs and RBNS = 320-+240490 Gpc-3 yr-1 for binary neutron stars. We find that the BBH rate likely increases with redshift (85% credibility) but not faster than the star formation rate (86% credibility). Additionally, we examine recent exceptional events in the context of our population models, finding that the asymmetric masses of GW190412 and the high component masses of GW190521 are consistent with our models, but the low secondary mass of GW190814 makes it an outlier.

468 citations


Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1692 moreInstitutions (195)
TL;DR: In this article, the authors reported the observation of gravitational waves from two compact binary coalescences in LIGO's and Virgo's third observing run with properties consistent with neutron star-black hole (NSBH) binaries.
Abstract: We report the observation of gravitational waves from two compact binary coalescences in LIGO’s and Virgo’s third observing run with properties consistent with neutron star–black hole (NSBH) binaries. The two events are named GW200105_162426 and GW200115_042309, abbreviated as GW200105 and GW200115; the first was observed by LIGO Livingston and Virgo and the second by all three LIGO–Virgo detectors. The source of GW200105 has component masses 8.9−1.5+1.2 and 1.9−0.2+0.3M⊙ , whereas the source of GW200115 has component masses 5.7−2.1+1.8 and 1.5−0.3+0.7M⊙ (all measurements quoted at the 90% credible level). The probability that the secondary’s mass is below the maximal mass of a neutron star is 89%–96% and 87%–98%, respectively, for GW200105 and GW200115, with the ranges arising from different astrophysical assumptions. The source luminosity distances are 280−110+110 and 300−100+150Mpc , respectively. The magnitude of the primary spin of GW200105 is less than 0.23 at the 90% credible level, and its orientation is unconstrained. For GW200115, the primary spin has a negative spin projection onto the orbital angular momentum at 88% probability. We are unable to constrain the spin or tidal deformation of the secondary component for either event. We infer an NSBH merger rate density of 45−33+75Gpc−3yr−1 when assuming that GW200105 and GW200115 are representative of the NSBH population or 130−69+112Gpc−3yr−1 under the assumption of a broader distribution of component masses.

374 citations


Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1335 moreInstitutions (144)
TL;DR: The data recorded by these instruments during their first and second observing runs are described, including the gravitational-wave strain arrays, released as time series sampled at 16384 Hz.

320 citations


Journal ArticleDOI
TL;DR: Total fluorine (TF) measurements complemented by suspect screening using high resolution mass spectrometry are emerging as essential tools for PFAS exposure assessment to better understand contributions from precursor compounds that degrade into terminal perfluoroalkyl acids (PFAA).
Abstract: We synthesize current understanding of the magnitudes and methods for assessing human and wildlife exposures to poly- and perfluoroalkyl substances (PFAS). Most human exposure assessments have focused on 2 to 5 legacy PFAS, and wildlife assessments are typically limited to targeted PFAS (up to ~30 substances). However, shifts in chemical production are occurring rapidly, and targeted methods for detecting PFAS have not kept pace with these changes. Total fluorine measurements complemented by suspect screening using high-resolution mass spectrometry are thus emerging as essential tools for PFAS exposure assessment. Such methods enable researchers to better understand contributions from precursor compounds that degrade into terminal perfluoroalkyl acids. Available data suggest that diet is the major human exposure pathway for some PFAS, but there is large variability across populations and PFAS compounds. Additional data on total fluorine in exposure media and the fraction of unidentified organofluorine are needed. Drinking water has been established as the major exposure source in contaminated communities. As water supplies are remediated, for the general population, exposures from dust, personal care products, indoor environments, and other sources may be more important. A major challenge for exposure assessments is the lack of statistically representative population surveys. For wildlife, bioaccumulation processes differ substantially between PFAS and neutral lipophilic organic compounds, prompting a reevaluation of traditional bioaccumulation metrics. There is evidence that both phospholipids and proteins are important for the tissue partitioning and accumulation of PFAS. New mechanistic models for PFAS bioaccumulation are being developed that will assist in wildlife risk evaluations. Environ Toxicol Chem 2021;40:631-657. © 2020 SETAC.

212 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3  +1273 moreInstitutions (140)
TL;DR: In this article, the first and second observing runs of the Advanced LIGO and Virgo detector network were used to obtain the first standard-siren measurement of the Hubble constant (H 0).
Abstract: This paper presents the gravitational-wave measurement of the Hubble constant (H 0) using the detections from the first and second observing runs of the Advanced LIGO and Virgo detector network. The presence of the transient electromagnetic counterpart of the binary neutron star GW170817 led to the first standard-siren measurement of H 0. Here we additionally use binary black hole detections in conjunction with galaxy catalogs and report a joint measurement. Our updated measurement is H 0 = km s−1 Mpc−1 (68.3% of the highest density posterior interval with a flat-in-log prior) which is an improvement by a factor of 1.04 (about 4%) over the GW170817-only value of km s−1 Mpc−1. A significant additional contribution currently comes from GW170814, a loud and well-localized detection from a part of the sky thoroughly covered by the Dark Energy Survey. With numerous detections anticipated over the upcoming years, an exhaustive understanding of other systematic effects are also going to become increasingly important. These results establish the path to cosmology using gravitational-wave observations with and without transient electromagnetic counterparts.

171 citations


Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1678 moreInstitutions (193)
TL;DR: In this article, the authors report results of a search for an isotropic gravitational-wave background (GWB) using data from Advanced LIGO's and Advanced Virgo's third observing run (O3) combined with upper limits from the earlier O1 and O2 runs.
Abstract: We report results of a search for an isotropic gravitational-wave background (GWB) using data from Advanced LIGO’s and Advanced Virgo’s third observing run (O3) combined with upper limits from the earlier O1 and O2 runs. Unlike in previous observing runs in the advanced detector era, we include Virgo in the search for the GWB. The results of the search are consistent with uncorrelated noise, and therefore we place upper limits on the strength of the GWB. We find that the dimensionless energy density Ω GW ≤ 5.8 × 10 − 9 at the 95% credible level for a flat (frequency-independent) GWB, using a prior which is uniform in the log of the strength of the GWB, with 99% of the sensitivity coming from the band 20–76.6 Hz; Ω GW ( f ) ≤ 3.4 × 10 − 9 at 25 Hz for a power-law GWB with a spectral index of 2 / 3 (consistent with expectations for compact binary coalescences), in the band 20–90.6 Hz; and Ω GW ( f ) ≤ 3.9 × 10 − 10 at 25 Hz for a spectral index of 3, in the band 20–291.6 Hz. These upper limits improve over our previous results by a factor of 6.0 for a flat GWB, 8.8 for a spectral index of 2 / 3 , and 13.1 for a spectral index of 3. We also search for a GWB arising from scalar and vector modes, which are predicted by alternative theories of gravity; we do not find evidence of these, and place upper limits on the strength of GWBs with these polarizations. We demonstrate that there is no evidence of correlated noise of magnetic origin by performing a Bayesian analysis that allows for the presence of both a GWB and an effective magnetic background arising from geophysical Schumann resonances. We compare our upper limits to a fiducial model for the GWB from the merger of compact binaries, updating the model to use the most recent data-driven population inference from the systems detected during O3a. Finally, we combine our results with observations of individual mergers and show that, at design sensitivity, this joint approach may yield stronger constraints on the merger rate of binary black holes at z ≳ 2 than can be achieved with individually resolved mergers alone.

146 citations


Journal ArticleDOI
TL;DR: The American College of Gastroenterology (ACG) as discussed by the authors proposed the preferred approach to the management of adults with C. difficile infection and represent the official practice recommendations of the ACG.

138 citations


Journal ArticleDOI
TL;DR: A randomized, placebo-controlled, multi-arm trial of gantenerumab or solanezumab in participants with DIAD across asymptomatic and symptomatic disease stages was conducted in this paper.
Abstract: Dominantly inherited Alzheimer's disease (DIAD) causes predictable biological changes decades before the onset of clinical symptoms, enabling testing of interventions in the asymptomatic and symptomatic stages to delay or slow disease progression. We conducted a randomized, placebo-controlled, multi-arm trial of gantenerumab or solanezumab in participants with DIAD across asymptomatic and symptomatic disease stages. Mutation carriers were assigned 3:1 to either drug or placebo and received treatment for 4-7 years. The primary outcome was a cognitive end point; secondary outcomes included clinical, cognitive, imaging and fluid biomarker measures. Fifty-two participants carrying a mutation were assigned to receive gantenerumab, 52 solanezumab and 40 placebo. Both drugs engaged their Aβ targets but neither demonstrated a beneficial effect on cognitive measures compared to controls. The solanezumab-treated group showed a greater cognitive decline on some measures and did not show benefits on downstream biomarkers. Gantenerumab significantly reduced amyloid plaques, cerebrospinal fluid total tau, and phospho-tau181 and attenuated increases of neurofilament light chain. Amyloid-related imaging abnormalities edema was observed in 19.2% (3 out of 11 were mildly symptomatic) of the gantenerumab group, 2.5% of the placebo group and 0% of the solanezumab group. Gantenerumab and solanezumab did not slow cognitive decline in symptomatic DIAD. The asymptomatic groups showed no cognitive decline; symptomatic participants had declined before reaching the target doses.

137 citations


Journal ArticleDOI
TL;DR: Improved FXT stability and the synchronization for complex networks are confirmed by two numerical examples and several more accurate estimates for the settling time (ST) are obtained by means of some special functions.
Abstract: This article is concerned with the problem of fixed-time (FXT) and preassigned-time (PAT) synchronization for discontinuous dynamic networks by improving FXT stability and developing simple control schemes. First, some more relaxed conditions for FXT stability are established and several more accurate estimates for the settling time (ST) are obtained by means of some special functions. Based on the improved FXT stability, FXT synchronization for discontinuous networks is discussed by designing a simple controller without a linear feedback term. Besides, the PAT synchronization is also explored by developing several nontrivial control protocols with finite control gains, where the synchronized time can be prespecified according to actual needs and is irrelevant with any initial value and any parameter. Finally, the improved FXT stability and the synchronization for complex networks are confirmed by two numerical examples.

131 citations


Journal ArticleDOI
TL;DR: In this article, a mechanistic focus on the zoonotic pathogen infect-shed-spill-spread cascade is proposed to enable protection of landscape immunity, the ecological conditions that reduce the risk of pathogen spillover from reservoir hosts.

113 citations


Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors developed an approach by integrating the maximum spectral index composite (MSIC) and the Otsu algorithm (OA), and so named MSIC-OA.

Journal ArticleDOI
TL;DR: In this article, two-dimensional (2D) covalent organic frameworks (COFs) are shown to combine high thermal conductivity with a low dielectric constant.
Abstract: As the features of microprocessors are miniaturized, low-dielectric-constant (low-k) materials are necessary to limit electronic crosstalk, charge build-up, and signal propagation delay. However, all known low-k dielectrics exhibit low thermal conductivities, which complicate heat dissipation in high-power-density chips. Two-dimensional (2D) covalent organic frameworks (COFs) combine immense permanent porosities, which lead to low dielectric permittivities, and periodic layered structures, which grant relatively high thermal conductivities. However, conventional synthetic routes produce 2D COFs that are unsuitable for the evaluation of these properties and integration into devices. Here, we report the fabrication of high-quality COF thin films, which enable thermoreflectance and impedance spectroscopy measurements. These measurements reveal that 2D COFs have high thermal conductivities (1 W m−1 K−1) with ultra-low dielectric permittivities (k = 1.6). These results show that oriented, layered 2D polymers are promising next-generation dielectric layers and that these molecularly precise materials offer tunable combinations of useful properties. Low-k dielectric materials are essential to allow continued electronics miniaturization, but their low thermal conductivity limits performance. Here, two-dimensional covalent organic frameworks are shown to combine high thermal conductivity with a low dielectric constant.


Journal ArticleDOI
TL;DR: In this paper, the authors identify four priority areas to advance invasion science in the face of rapid global environmental change and recommend that internationally cooperative biosecurity strategies consider the bridgehead effects of global dispersal networks, in which organisms tend to invade new regions from locations where they have already established.
Abstract: Unprecedented rates of introduction and spread of non-native species pose burgeoning challenges to biodiversity, natural resource management, regional economies, and human health. Current biosecurity efforts are failing to keep pace with globalization, revealing critical gaps in our understanding and response to invasions. Here, we identify four priority areas to advance invasion science in the face of rapid global environmental change. First, invasion science should strive to develop a more comprehensive framework for predicting how the behavior, abundance, and interspecific interactions of non-native species vary in relation to conditions in receiving environments and how these factors govern the ecological impacts of invasion. A second priority is to understand the potential synergistic effects of multiple co-occurring stressors— particularly involving climate change—on the establishment and impact of non-native species. Climate adaptation and mitigation strategies will need to consider the possible consequences of promoting non-native species, and appropriate management responses to non-native species will need to be developed. The third priority is to address the taxonomic impediment. The ability to detect and evaluate invasion risks is compromised by a growing deficit in taxonomic expertise, which cannot be adequately compensated by new molecular technologies alone. Management of biosecurity risks will become increasingly challenging unless academia, industry, and governments train and employ new personnel in taxonomy and systematics. Fourth, we recommend that internationally cooperative biosecurity strategies consider the bridgehead effects of global dispersal networks, in which organisms tend to invade new regions from locations where they have already established. Cooperation among countries to eradicate or control species established in bridgehead regions should yield greater benefit than independent attempts by individual countries to exclude these species from arriving and establishing.

Journal ArticleDOI
TL;DR: The TTC scheme, derived by combining the ETC scheme and the STC scheme, is able to relax the requirement of continuous communication and thus lowering the energy consumption of communication while ensuring the performance of the system.
Abstract: This article addresses the team-triggered fixed-time consensus problems for a class of double-integrator agents subject to uncertain disturbance Compared with the finite-time results, the convergence time of the fixed-time results is independent of the initial conditions Furthermore, a novel team-triggered control (TTC) strategy is presented This control strategy incorporates the event-triggered control (ETC) and self-triggered control (STC) The ETC and STC are proposed to achieve the fixed-time consensus of second-order multiagent systems (MASs), and no Zeno behavior occurs The TTC scheme, derived by combining the ETC scheme and the STC scheme, is able to relax the requirement of continuous communication and thus lowering the energy consumption of communication while ensuring the performance of the system The effectiveness of the proposed algorithms is validated by numerical simulations

Journal ArticleDOI
TL;DR: In this paper, the authors trace the evolution of the field of sustainability in management and organization studies and narrate its epistemological twists and turns, concerned by the current trajectory of sustainability.
Abstract: In this essay, we trace the evolution of the field of sustainability in management and organization studies and narrate its epistemological twists and turns. Concerned by the current trajectory tha...

Journal ArticleDOI
TL;DR: In this article, the authors advocate shifting the outdated value system to advance science through principles of justice, equity, diversity, and inclusion, and outline pathways for a paradigm shift in scientific values based on multidimensional mentorship and promoting mentee well-being.
Abstract: Success and impact metrics in science are based on a system that perpetuates sexist and racist "rewards" by prioritizing citations and impact factors. These metrics are flawed and biased against already marginalized groups and fail to accurately capture the breadth of individuals' meaningful scientific impacts. We advocate shifting this outdated value system to advance science through principles of justice, equity, diversity, and inclusion. We outline pathways for a paradigm shift in scientific values based on multidimensional mentorship and promoting mentee well-being. These actions will require collective efforts supported by academic leaders and administrators to drive essential systemic change.

Journal ArticleDOI
TL;DR: This triangulation of two distinct sources of evidence provides guidance on how BCTs may affect the mechanisms that change behavior and is available as a resource for behavior change intervention designers, researchers and theorists, supporting intervention design, research synthesis, and collaborative research.
Abstract: Researchers, practitioners, and policymakers develop interventions to change behavior based on their understanding of how behavior change techniques (BCTs) impact the determinants of behavior. A transparent, systematic, and accessible method of linking BCTs with the processes through which they change behavior (i.e., their mechanisms of action [MoAs]) would advance the understanding of intervention effects and improve theory and intervention development. The purpose of this study is to triangulate evidence for hypothesized BCT-MoA links obtained in two previous studies and present the results in an interactive, online tool. Two previous studies generated evidence on links between 56 BCTs and 26 MoAs based on their frequency in literature synthesis and on expert consensus. Concordance between the findings of the two studies was examined using multilevel modeling. Uncertainties and differences between the two studies were reconciled by 16 behavior change experts using consensus development methods. The resulting evidence was used to generate an online tool. The two studies showed concordance for 25 of the 26 MoAs and agreement for 37 links and for 460 "nonlinks." A further 55 links were resolved by consensus (total of 92 [37 + 55] hypothesized BCT-MoA links). Full data on 1,456 possible links was incorporated into the online interactive Theory and Technique Tool (https://theoryandtechniquetool.humanbehaviourchange.org/). This triangulation of two distinct sources of evidence provides guidance on how BCTs may affect the mechanisms that change behavior and is available as a resource for behavior change intervention designers, researchers and theorists, supporting intervention design, research synthesis, and collaborative research.

Journal ArticleDOI
TL;DR: In this article, the authors outlined ongoing retinal imaging research in Alzheimer's and other brain diseases, including a discussion of future directions for this area of study, and the importance of defining the context of use to help guide the development of retinal biomarkers.
Abstract: In the last 20 years, research focused on developing retinal imaging as a source of potential biomarkers for Alzheimer's disease and other neurodegenerative diseases, has increased significantly. The Alzheimer's Association and the Alzheimer's & Dementia: Diagnosis, Assessment, Disease Monitoring editorial team (companion journal to Alzheimer's & Dementia) convened an interdisciplinary discussion in 2019 to identify a path to expedite the development of retinal biomarkers capable of identifying biological changes associated with AD, and for tracking progression of disease severity over time. As different retinal imaging modalities provide different types of structural and/or functional information, the discussion reflected on these modalities and their respective strengths and weaknesses. Discussion further focused on the importance of defining the context of use to help guide the development of retinal biomarkers. Moving from research to context of use, and ultimately to clinical evaluation, this article outlines ongoing retinal imaging research today in Alzheimer's and other brain diseases, including a discussion of future directions for this area of study.

Journal ArticleDOI
TL;DR: Coiro et al. as mentioned in this paper explored the tension between almost 30 years of work that has embraced increasingly complex conceptions of digital reading and recent studies that risk oversimplifying digital reading as a singular entity analogous with reading text on a screen.
Abstract: In this commentary, the author explores the tension between almost 30 years of work that has embraced increasingly complex conceptions of digital reading and recent studies that risk oversimplifying digital reading as a singular entity analogous with reading text on a screen. The author begins by tracing a line of theoretical and empirical work that both informs and complicates our understanding of digital literacy and, more specifically, digital reading. Then, a heuristic is proposed to systematically organize, label, and define a multifaceted set of increasingly complex terms, concepts, and practices that characterize the spectrum of digital reading experiences. Research that informs this heuristic is used to illustrate how more precision in defining digital reading can promote greater clarity across research methods and advance a more systematic study of promising digital reading practices. Finally, the author discusses implications for assessment, research, practice, and policy. PLEASE CITE AS FOLLOWS: Coiro, J. (2020, Feb. 20). Toward a multifaceted heuristic of digital reading to inform assessment, research, practice, and policy. Reading Research Quarterly. Online first version available at https://doi.org/10.1002/rrq.302

Journal ArticleDOI
TL;DR: In this article, the authors explored self-reported changes in caregiving intensity and caregiver burden among informal caregivers due to the COVID-19 pandemic overall and by gender.
Abstract: This study explored self-reported changes in caregiving intensity (CI) and caregiver burden (CB) among informal caregivers due to the COVID-19 pandemic overall and by gender. Informal caregivers fo...

Journal ArticleDOI
TL;DR: A novel distributed policy iteration algorithm is established for infinite horizon optimal control problems of continuous-time nonlinear systems to improve the iterative control law one by one, instead of updating all the control laws in each iteration of the traditional policy iteration algorithms.
Abstract: In this article, a novel distributed policy iteration algorithm is established for infinite horizon optimal control problems of continuous-time nonlinear systems. In each iteration of the developed distributed policy iteration algorithm, only one controller’s control law is updated and the other controllers’ control laws remain unchanged. The main contribution of the present algorithm is to improve the iterative control law one by one, instead of updating all the control laws in each iteration of the traditional policy iteration algorithms, which effectively releases the computational burden in each iteration. The properties of distributed policy iteration algorithm for continuous-time nonlinear systems are analyzed. The admissibility of the present methods has also been analyzed. Monotonicity, convergence, and optimality have been discussed, which show that the iterative value function is nonincreasingly convergent to the solution of the Hamilton–Jacobi–Bellman equation. Finally, numerical simulations are conducted to illustrate the effectiveness of the proposed method.

Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1665 moreInstitutions (193)
TL;DR: In this article, the authors search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO and Virgo full O3 dataset and obtain results for the first time that kink-kink collisions do not yield a detection.
Abstract: We search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO and Virgo full O3 dataset Search results are presented for gravitational waves produced by cosmic string loop features such as cusps, kinks, and, for the first time, kink-kink collisions A template-based search for short-duration transient signals does not yield a detection We also use the stochastic gravitational-wave background energy density upper limits derived from the O3 data to constrain the cosmic string tension Gμ as a function of the number of kinks, or the number of cusps, for two cosmic string loop distribution models Additionally, we develop and test a third model that interpolates between these two models Our results improve upon the previous LIGO-Virgo constraints on Gμ by 1 to 2 orders of magnitude depending on the model that is tested In particular, for the one-loop distribution model, we set the most competitive constraints to date: Gμ≲4×10^{-15} In the case of cosmic strings formed at the end of inflation in the context of grand unified theories, these results challenge simple inflationary models

Journal ArticleDOI
TL;DR: In this paper, the authors designed an online survey to understand how people were using and perceiving UGS during the COVID-19 pandemic in New York City during the spring of 2020, and found that most respondents were concerned about social distancing and crowded UGS, and respondents with these concerns were less likely to visit UGS and had visited UGS less often during than before the pandemic.

Journal ArticleDOI
TL;DR: An experience-based distributed controller is proposed to improve the control performance and reduce the computational burden of an uncertain high-order nonlinear multiagent system with guaranteed transient performance and preserved initial connectivity under an undirected and static communication topology.
Abstract: For an uncertain multiagent system, distributed cooperative learning control exerting the learning capability of the control system in a cooperative way is one of the most important and challenging issues. This article aims to address this issue for an uncertain high-order nonlinear multiagent system with guaranteed transient performance and preserved initial connectivity under an undirected and static communication topology. The considered multiagent system has an identical structure and the uncertain agent dynamics are estimated by localized radial basis function (RBF) neural networks (NNs) in a cooperative way. The NN weight estimates are rigorously proven to converge to small neighborhoods of their common optimal values along the union of all agents’ trajectories by a deterministic learning theory. Consequently, the associated uncertain dynamics can be locally accurately identified and can be stored and represented by constant RBF networks. Using the stored knowledge on identified system dynamics, an experience-based distributed controller is proposed to improve the control performance and reduce the computational burden. The theoretical results are demonstrated on an application to the formation control of a group of unmanned surface vehicles.

Journal ArticleDOI
TL;DR: In this paper, an optimization framework that combines the model-based RL agent with the mathematical optimization technique is designed, and long short-term memory (LSTM) units are adopted to extract features from the past renewable generation and load sequences.
Abstract: The uncertainty of distributed renewable energy brings significant challenges to economic operation of microgrids. Conventional online optimization approaches require a forecast model. However, accurately forecasting the renewable power generations is still a tough task. To achieve online scheduling of a residential microgrid (RM) that does not need a forecast model to predict the future PV/wind and load power sequences, this article investigates the usage of reinforcement learning (RL) approach to tackle this challenge. Specifically, based on the recent development of $ {M}$ odel-Based $ {R}$ einforcement $ {L}$ earning, MuZero (Schrittwieser et al. , 2019) we investigate its application to the RM scheduling problem. To accommodate the characteristics of the RM scheduling application, an optimization framework that combines the model-based RL agent with the mathematical optimization technique is designed, and long short-term memory (LSTM) units are adopted to extract features from the past renewable generation and load sequences. At each time step, the optimal decision is obtained by conducting Monte-Carlo tree search (MCTS) with a learned model and solving an optimal power flow sub-problem. In this way, this approach can sequentially make operational decisions online without relying on a forecast model. The numerical simulation results demonstrate the effectiveness of the proposed algorithm.

Journal ArticleDOI
TL;DR: A flexibility analytical framework is developed to fully harness the controllability of various resources in both spatial and temporal scales, and is available for future analysis.
Abstract: This paper proposes a risk-averse time-series joint scheduling method to release inherent benefits for improvements on operational cost, voltage profile and risk control, through flexibility extraction from grid-storage-demand resources in active distribution networks (ADNs). In particular, a flexibility analytical framework is developed to fully harness the controllability of various resources in both spatial and temporal scales, and is available for future analysis. The expected operational cost and the risks imposed by uncertainties are simultaneously addressed via conditional value at risk while satisfying physical and operating constraints, in which a sample weighted average approximation (SWAA) technique is employed for approximating the faced uncertainties. The SWAA-based stochastic scheduling problem is further transformed into a second-order cone programming problem via linearization and conic relaxation. Numerical simulations on 33-bus and 123-bus test systems verify the effectiveness of the proposed method.

Journal ArticleDOI
TL;DR: In this paper, the crystal structure of the Erm-dimethylated 70S ribosome at 2.4-4-A resolution was presented, together with the structures of unmethylated and 23S rRNA nucleotide A2058-based 70S-ribosome functional complexes alone or in combination with macrolides.
Abstract: Many antibiotics inhibit bacterial growth by binding to the ribosome and interfering with protein biosynthesis. Macrolides represent one of the most successful classes of ribosome-targeting antibiotics. The main clinically relevant mechanism of resistance to macrolides is dimethylation of the 23S rRNA nucleotide A2058, located in the drug-binding site, a reaction catalyzed by Erm-type rRNA methyltransferases. Here, we present the crystal structure of the Erm-dimethylated 70S ribosome at 2.4 A resolution, together with the structures of unmethylated 70S ribosome functional complexes alone or in combination with macrolides. Altogether, our structural data do not support previous models and, instead, suggest a principally new explanation of how A2058 dimethylation confers resistance to macrolides. Moreover, high-resolution structures of two macrolide antibiotics bound to the unmodified ribosome reveal a previously unknown role of the desosamine moiety in drug binding, laying a foundation for the rational knowledge-based design of macrolides that can overcome Erm-mediated resistance. Structural analysis of the A2058-dimethylated and unmethylated 70S ribosome complex alone and in combination with macrolides reveals the role of the desosamine moiety of macrolides in drug binding and resistance.

Journal ArticleDOI
07 Jul 2021
TL;DR: In this article, the authors used Remote Sensing (RS) and Geographic Information System (GIS) techniques to evaluate the impact of land use change on the land surface temperature.
Abstract: Urbanization leads to the construction of various urban infrastructures in the city area for residency, transportation, industry, and other purposes, which causes major land use change. Consequently, it substantially affects Land Surface Temperature (LST) by unbalancing the surface energy budget. Higher LST in city areas decreases human thermal comfort for the city dwellers and affects the urban environment and ecosystem. Therefore, a comprehensive investigation is needed to evaluate the impact of land use change on the LST. Remote Sensing (RS) and Geographic Information System (GIS) techniques were used for the detailed investigation. RS data for the years 1993, 2007 and 2020 during summer (March–May) in Dhaka city were used to prepare land cover maps, analyze LST, generate hazard maps and relate the land cover change with LST by using GIS. The results show that the built-up area in Dhaka city increased by 67% from 1993 to 2020 by replacing lowland mainly, followed by vegetation, bare soil and water bodies. LSTs found in the study area were ranged from 23.26 to 39.94 °C, 23.69 to 43.35 °C and 24.44 to 44.58 °C for the years 1993, 2007 and 2020, respectively. The increases of spatially distributed maximum and mean LST were found 4.62 °C and 6.43 °C, respectively, for the study period of 27 years while the change in minimum LST was not substantial. LST increased by around 0.24 °C per year and human thermal discomfort shifted from moderate to strong heat stress for the total study period due to the increase of built-up and bare lands. This study also shows that normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were negatively correlated with LST while normalized difference built-up Index (NDBI) and normalized difference built-up Index (NDBAI) were positively correlated with LST. The methodology developed in this study can be adapted to other cities around the globe.

OtherDOI
17 Sep 2021
TL;DR: Experiment and observation have established the centrality of oxygen fugacity (fO2) to determining the course of igneous differentiation, and so the development and application of oxybarometers hav...
Abstract: Experiment and observation have established the centrality of oxygen fugacity (fO2) to determining the course of igneous differentiation, and so the development and application of oxybarometers hav...