scispace - formally typeset
Search or ask a question
Institution

University of Rhode Island

EducationKingston, Rhode Island, United States
About: University of Rhode Island is a education organization based out in Kingston, Rhode Island, United States. It is known for research contribution in the topics: Population & Bay. The organization has 11464 authors who have published 22770 publications receiving 841066 citations. The organization is also known as: URI & Rhode Island College of Agriculture and the Mechanic Arts.


Papers
More filters
Journal ArticleDOI
TL;DR: RAMOBoost adaptively ranks minority class instances at each learning iteration according to a sampling probability distribution that is based on the underlying data distribution, and can adaptively shift the decision boundary toward difficult-to-learn minority and majority class instances by using a hypothesis assessment procedure.
Abstract: In recent years, learning from imbalanced data has attracted growing attention from both academia and industry due to the explosive growth of applications that use and produce imbalanced data. However, because of the complex characteristics of imbalanced data, many real-world solutions struggle to provide robust efficiency in learning-based applications. In an effort to address this problem, this paper presents Ranked Minority Oversampling in Boosting (RAMOBoost), which is a RAMO technique based on the idea of adaptive synthetic data generation in an ensemble learning system. Briefly, RAMOBoost adaptively ranks minority class instances at each learning iteration according to a sampling probability distribution that is based on the underlying data distribution, and can adaptively shift the decision boundary toward difficult-to-learn minority and majority class instances by using a hypothesis assessment procedure. Simulation analysis on 19 real-world datasets assessed over various metrics-including overall accuracy, precision, recall, F-measure, G-mean, and receiver operation characteristic analysis-is used to illustrate the effectiveness of this method.

194 citations

Journal ArticleDOI
TL;DR: In this paper, major, volatile, and trace element concentrations in combination with Fe^(3+)/∑Fe ratios determined in olivine-hosted glass inclusions and submarine glasses from five Mariana arc volcanoes and two regions of the Mariana Trough.
Abstract: Arc basalts are more oxidized than mid-ocean ridge basalts, but it is unclear whether this difference is due to differentiation processes in the Earth’s crust or to a fundamental difference in the oxygen fugacity of their mantle sources. Distinguishing between these two hypotheses is important for understanding redox-sensitive processes related to arc magmatism, and thus more broadly how Earth materials cycle globally. We present major, volatile, and trace element concentrations in combination with Fe^(3+)/∑Fe ratios determined in olivine-hosted glass inclusions and submarine glasses from five Mariana arc volcanoes and two regions of the Mariana Trough. For single eruptions, Fe^(3+)/∑Fe ratios vary along liquid lines of descent that are either slightly oxidizing (olivine + clinopyroxene + plagioclase fractionation, CO_2 ± H_2O degassing) or reducing (olivine + clinopyroxene + plagioclase ± magnetite fractionation, CO_2 + H_2O + S degassing). Mariana samples are consistent with a global relationship between calc-alkaline affinity and both magmatic H_2O and magmatic oxygen fugacity, where wetter, higher oxygen fugacity magmas display greater affinity for calc-alkaline differentiation. We find, however, that low-pressure differentiation cannot explain the majority of variations observed in Fe^(3+)/∑Fe ratios for Mariana arc basalts, requiring primary differences in magmatic oxygen fugacity. Calculated oxygen fugacities of primary mantle melts at the pressures and temperatures of melt segregation are significantly oxidized relative to mid-ocean ridge basalts (∼QFM, where QFM is quartz–fayalite–magnetite buffer), ranging from QFM + 1·0 to QFM + 1·6 for Mariana arc basalts, whereas back-arc related samples record primary oxygen fugacities that range from QFM + 0·1 to QFM + 0·5. This Mariana arc sample suite includes a diversity of subduction influences, from lesser influence of a homogeneous H_2O-rich component in the back-arc, to sediment melt- and fluid-dominated influences along the arc. Primary melt oxygen fugacity does not correlate significantly with sediment melt contributions (e.g. Th/La), nor can it be attributed to previous melt extraction in the back-arc. Primary melt oxygen fugacity correlates strongly with indices of slab fluids (e.g. Ba/La) from the Mariana Trough through the Mariana arc, increasing by 1·5 orders of magnitude as Ba/La increases by a factor of 10 relative to mid-ocean ridge basalts. These results suggest that contributions from the slab to the mantle wedge may be responsible for the elevated oxygen fugacity recorded by Mariana arc basalts and that slab fluids are potentially very oxidized.

193 citations

Journal ArticleDOI
TL;DR: In this paper, chemical variations between the 15 larger volcanic islands of the Lesser Antilles island arc are examined in detail as type examples of this variation, i.e. Grenada (south), Dominica (centre), and St. Kitts (north).

193 citations

Journal ArticleDOI
TL;DR: In this article, primary and secondary amines are rapidly labelled by 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate to form highly fluorescent asymmetric urea derivatives which are readily amenable to analysis by liquid chromatography.

193 citations

Journal ArticleDOI
01 Nov 1997-Geology
TL;DR: In this paper, expanded sedimentary records of the late Paleocene thermal maximum, a dramatic global warming event that occurred at ca. 55 million years ago, were used to investigate the role of volcanic activity in ocean circulation.
Abstract: Two recently drilled Caribbean sites contain expanded sedimentary records of the late Paleocene thermal maximum, a dramatic global warming event that occurred at ca. 55 Ma. The records document significant environmental changes, including deep-water oxygen deficiency and a mass extinction of deep-sea fauna, intertwined with evidence for a major episode of explosive volcanism. We postulate that this volcanism initiated a reordering of ocean circulation that resulted in rapid global warming and dramatic changes in the Earth’s environment.

193 citations


Authors

Showing all 11569 results

NameH-indexPapersCitations
James M. Tiedje150688102287
Roberto Kolter12031552942
Robert S. Stern12076162834
Michael S. Feld11955251968
William C. Sessa11738352208
Kenneth H. Mayer115135164698
Staffan Kjelleberg11442544414
Kevin C. Jones11474450207
David R. Nelson11061566627
Peter K. Smith10785549174
Peter M. Groffman10645740165
Ming Li103166962672
Victor Nizet10256444193
Anil Kumar99212464825
James O. Prochaska9732073265
Network Information
Related Institutions (5)
Rutgers University
159.4K papers, 6.7M citations

92% related

Pennsylvania State University
196.8K papers, 8.3M citations

91% related

University of Maryland, College Park
155.9K papers, 7.2M citations

91% related

Texas A&M University
164.3K papers, 5.7M citations

91% related

University of Washington
305.5K papers, 17.7M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202344
2022161
20211,105
20201,058
2019996
2018888