scispace - formally typeset
Search or ask a question
Institution

University of Saskatchewan

EducationSaskatoon, Saskatchewan, Canada
About: University of Saskatchewan is a education organization based out in Saskatoon, Saskatchewan, Canada. It is known for research contribution in the topics: Population & Health care. The organization has 25021 authors who have published 52579 publications receiving 1483049 citations. The organization is also known as: USask.


Papers
More filters
Journal ArticleDOI
TL;DR: A mechanism of tissue 6'5N enrichment due to reduced nutrient intake is hypothesized and the implications of these results to ecosystem studies using stable-nitrogen isotope analysis are discussed.
Abstract: Studies using measurements of61'5N to delineate diet or trophic level in natural ecosystems are based on the premise that 6'5N values in consumer tissues can be reliably correlated with those in the diet. However, juvenile Japanese Quail (Coturnixjaponica) fed a rationed diet designed to maintain, but not increase, body mass showed significantly enriched tissue 6'5N values over a control group fed the same diet ad libitum. We tested the hypothesis that fasting or nutritional stress can also cause elevated 6'5N values in tissues of wild birds by examining tissues of Arctic-nesting female Ross' Geese (Chen rossii) before and after their period of fasting during egg laying and incubation. Significant declines in body, pectoral muscle, liver and abdominal fat mass occurred from arrival through incubation. Post-incubating geese showed significantly higher pectoral muscle and liver 6'5N values compared to geese taken before clutch initiation but 6a3C values in these tissues were unchanged. We hypothesize a mechanism of tissue 6'5N enrichment due to reduced nutrient intake and discuss the implications of these results to ecosystem studies using stable-nitrogen isotope analysis.

865 citations

Journal ArticleDOI
15 May 1996
TL;DR: This paper concludes with a discussion of caching and performance issues, using the invariants to suggest performance enhancements that seem most promising for Internet Web servers.
Abstract: The phenomenal growth in popularity of the World Wide Web (WWW, or the Web) has made WWW traffic the largest contributor to packet and byte traffic on the NSFNET backbone. This growth has triggered recent research aimed at reducing the volume of network traffic produced by Web clients and servers, by using caching, and reducing the latency for WWW users, by using improved protocols for Web interaction.Fundamental to the goal of improving WWW performance is an understanding of WWW workloads. This paper presents a workload characterization study for Internet Web servers. Six different data sets are used in this study: three from academic (i.e., university) environments, two from scientific research organizations, and one from a commercial Internet provider. These data sets represent three different orders of magnitude in server activity, and two different orders of magnitude in time duration, ranging from one week of activity to one year of activity.Throughout the study, emphasis is placed on finding workload invariants: observations that apply across all the data sets studied. Ten invariants are identified. These invariants are deemed important since they (potentially) represent universal truths for all Internet Web servers. The paper concludes with a discussion of caching and performance issues, using the invariants to suggest performance enhancements that seem most promising for Internet Web servers.

858 citations

Journal ArticleDOI
15 Oct 2010-Spine
TL;DR: The Spine Instability Neoplastic Score is a comprehensive classification system with content validity that can guide clinicians in identifying when patients with neoplastic disease of the spine may benefit from surgical consultation and aid surgeons in assessing the key components of spinal instability due to neoplasia.
Abstract: Study design Systematic review and modified Delphi technique. Objective To use an evidence-based medicine process using the best available literature and expert opinion consensus to develop a comprehensive classification system to diagnose neoplastic spinal instability. Summary of background data Spinal instability is poorly defined in the literature and presently there is a lack of guidelines available to aid in defining the degree of spinal instability in the setting of neoplastic spinal disease. The concept of spinal instability remains important in the clinical decision-making process for patients with spine tumors. Methods We have integrated the evidence provided by systematic reviews through a modified Delphi technique to generate a consensus of best evidence and expert opinion to develop a classification system to define neoplastic spinal instability. Results A comprehensive classification system based on patient symptoms and radiographic criteria of the spine was developed to aid in predicting spine stability of neoplastic lesions. The classification system includes global spinal location of the tumor, type and presence of pain, bone lesion quality, spinal alignment, extent of vertebral body collapse, and posterolateral spinal element involvement. Qualitative scores were assigned based on relative importance of particular factors gleaned from the literature and refined by expert consensus. Conclusion The Spine Instability Neoplastic Score is a comprehensive classification system with content validity that can guide clinicians in identifying when patients with neoplastic disease of the spine may benefit from surgical consultation. It can also aid surgeons in assessing the key components of spinal instability due to neoplasia and may become a prognostic tool for surgical decision-making when put in context with other key elements such as neurologic symptoms, extent of disease, prognosis, patient health factors, oncologic subtype, and radiosensitivity of the tumor.

856 citations

Journal ArticleDOI
TL;DR: The Prediction in Ungauged Basins (PUB) initiative of the International Association of Hydrological Sciences (IAHS) launched in 2003 and concluded by the PUB Symposium 2012 held in Delft (23-25 October 2012), set out to shift the scientific culture of hydrology towards improved scientific understanding of hydrological processes, as well as associated uncertainties and the development of models with increasing realism and predictive power as discussed by the authors.
Abstract: The Prediction in Ungauged Basins (PUB) initiative of the International Association of Hydrological Sciences (IAHS), launched in 2003 and concluded by the PUB Symposium 2012 held in Delft (23–25 October 2012), set out to shift the scientific culture of hydrology towards improved scientific understanding of hydrological processes, as well as associated uncertainties and the development of models with increasing realism and predictive power. This paper reviews the work that has been done under the six science themes of the PUB Decade and outlines the challenges ahead for the hydrological sciences community.Editor D. KoutsoyiannisCitation Hrachowitz, M., Savenije, H.H.G., Bloschl, G., McDonnell, J.J., Sivapalan, M., Pomeroy, J.W., Arheimer, B., Blume, T., Clark, M.P., Ehret, U., Fenicia, F., Freer, J.E., Gelfan, A., Gupta, H.V., Hughes, D.A., Hut, R.W., Montanari, A., Pande, S., Tetzlaff, D., Troch, P.A., Uhlenbrook, S., Wagener, T., Winsemius, H.C., Woods, R.A., Zehe, E., and Cudennec, C., 2013. A d...

848 citations

Journal ArticleDOI
TL;DR: In this article, a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide, was used to understand the sensitivity of tundras vegetation to climate warming and to forecast future biodiversity and vegetation feedbacks to climate.
Abstract: 35 Abstract Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation - and associated ecosystem consequences - have the potential to be much greater than we have observed to date.

830 citations


Authors

Showing all 25277 results

NameH-indexPapersCitations
Tomas Hökfelt158103395979
Frederick Wolfe119417101272
Christopher G. Goetz11665159510
John P. Giesy114116262790
Helmut Kettenmann10438040211
Paul M. O'Byrne10460556520
Susan S. Taylor10451842108
Keith A. Hobson10365341300
Mark S. Tremblay10054143843
James F. Fries10036983589
Gordon McKay9766161390
Jonathan D. Adachi9658931641
Wenjun Zhang9697638530
William C. Dement9634043014
Chris Ryan9597134388
Network Information
Related Institutions (5)
University of British Columbia
209.6K papers, 9.2M citations

95% related

McGill University
162.5K papers, 6.9M citations

94% related

University of Toronto
294.9K papers, 13.5M citations

94% related

University of California, Davis
180K papers, 8M citations

92% related

Cornell University
235.5K papers, 12.2M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023173
2022350
20213,129
20202,913
20192,665
20182,479