scispace - formally typeset
Search or ask a question
Institution

University of Saskatchewan

EducationSaskatoon, Saskatchewan, Canada
About: University of Saskatchewan is a education organization based out in Saskatoon, Saskatchewan, Canada. It is known for research contribution in the topics: Population & Health care. The organization has 25021 authors who have published 52579 publications receiving 1483049 citations. The organization is also known as: USask.


Papers
More filters
Journal ArticleDOI
23 Sep 2020-Nature
TL;DR: The findings of a World Health Organization expert working group that is developing animal models to test vaccines and therapeutic agents for the treatment of COVID-19, and their relevance for preclinical testing, are reviewed.
Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection caused by the introduction of a novel coronavirus into humans late in 2019 (first detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread to 215 countries, has infected more than 30 million people and has caused more than 950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there is an urgent need to develop therapeutic agents and vaccines to mitigate the current pandemic and to prevent the re-emergence of COVID-19. In February 2020, the World Health Organization (WHO) assembled an international panel to develop animal models for COVID-19 to accelerate the testing of vaccines and therapeutic agents. Here we summarize the findings to date and provides relevant information for preclinical testing of vaccine candidates and therapeutic agents for COVID-19.

630 citations

Journal ArticleDOI
TL;DR: The current understanding of the flow around two infinite circular cylinders of equal diameter immersed in a steady cross-flow, with a focus on the near-wake flow patterns, Reynolds number effects, intermediate wake structure and behaviour, and the general trends in the measurements of the aerodynamic force coefficients and Strouhal numbers are reviewed in this paper.

630 citations

Journal ArticleDOI
TL;DR: In this paper, wheat and barley straws, corn stover and switchgrass at two moisture contents were ground using a hammer mill with three different screen sizes (3.2, 1.6 and 0.8 mm ).
Abstract: Wheat and barley straws, corn stover and switchgrass at two moisture contents were ground using a hammer mill with three different screen sizes (3.2, 1.6 and 0.8 mm ). Energy required for grinding these materials was measured. Among the four materials, switchgrass had the highest specific energy consumption ( 27.6 kW h t −1 ), and corn stover had the least specific energy consumption ( 11.0 kW h t −1 ) at 3.2 mm screen size. Physical properties of grinds such as moisture content, geometric mean diameter of grind particles, particle size distribution, and bulk and particle densities were determined. Second- or third-order polynomial models were developed relating bulk and particle densities of grinds to geometric mean diameter within the range of 0.18– 1.43 mm . Switchgrass had the highest calorific value and the lowest ash content among the biomass species tested.

629 citations

Journal ArticleDOI
07 Jul 2017-Science
TL;DR: A 10.1-gigabase assembly of the 14 chromosomes of wild tetraploid wheat, as well as analyses of gene content, genome architecture, and genetic diversity reveal genomic regions bearing the signature of selection under domestication.
Abstract: Wheat (Triticum spp.) is one of the founder crops that likely drove the Neolithic transition to sedentary agrarian societies in the Fertile Crescent more than 10,000 years ago. Identifying genetic modifications underlying wheat's domestication requires knowledge about the genome of its allo-tetraploid progenitor, wild emmer (T. turgidum ssp. dicoccoides). We report a 10.1-gigabase assembly of the 14 chromosomes of wild tetraploid wheat, as well as analyses of gene content, genome architecture, and genetic diversity. With this fully assembled polyploid wheat genome, we identified the causal mutations in Brittle Rachis 1 (TtBtr1) genes controlling shattering, a key domestication trait. A study of genomic diversity among wild and domesticated accessions revealed genomic regions bearing the signature of selection under domestication. This reference assembly will serve as a resource for accelerating the genome-assisted improvement of modern wheat varieties.

622 citations


Authors

Showing all 25277 results

NameH-indexPapersCitations
Tomas Hökfelt158103395979
Frederick Wolfe119417101272
Christopher G. Goetz11665159510
John P. Giesy114116262790
Helmut Kettenmann10438040211
Paul M. O'Byrne10460556520
Susan S. Taylor10451842108
Keith A. Hobson10365341300
Mark S. Tremblay10054143843
James F. Fries10036983589
Gordon McKay9766161390
Jonathan D. Adachi9658931641
Wenjun Zhang9697638530
William C. Dement9634043014
Chris Ryan9597134388
Network Information
Related Institutions (5)
University of British Columbia
209.6K papers, 9.2M citations

95% related

McGill University
162.5K papers, 6.9M citations

94% related

University of Toronto
294.9K papers, 13.5M citations

94% related

University of California, Davis
180K papers, 8M citations

92% related

Cornell University
235.5K papers, 12.2M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023173
2022350
20213,129
20202,913
20192,665
20182,479