scispace - formally typeset
Search or ask a question
Institution

University of Science and Technology Beijing

EducationBeijing, China
About: University of Science and Technology Beijing is a education organization based out in Beijing, China. It is known for research contribution in the topics: Microstructure & Alloy. The organization has 41558 authors who have published 44473 publications receiving 623229 citations. The organization is also known as: Beijing Steel and Iron Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an efficient numerical algorithm based on a Fourier spectral iterative perturbation method is proposed to accurately compute the electrostatic fields in 3D microstructures with arbitrary dielectric inhomogeneity and anisotropy.

154 citations

Journal ArticleDOI
TL;DR: In this article, a tailings dam monitoring and pre-alarm system (TDMPAS) based on the internet of things (IOT) and cloud computing (CC) is proposed with the abilities of real-time monitoring of the saturated line.

154 citations

Journal ArticleDOI
TL;DR: A highly conductive caterpillar-like NiCo 2S4, composed of NiCo2S4 nanosheet core and nanowire shell grown on Ni foam via a facile and cost-effective chemical liquid process, indicates that the NiCo3S4 NSNWs structure has great potential in supercapacitors.
Abstract: Ternary cobalt nickel sulfide as a novel and efficient electrode material in supercapacitors has recently gained extensive interests. Herein, we first report a highly conductive caterpillar-like NiCo2S4, composed of NiCo2S4 nanosheet core and nanowire shell grown on Ni foam via a facile and cost-effective chemical liquid process. Growth mechanism of the NiCo2S4 nanosheets@nanowires (NSNWs) structure was also investigated in detail by analyzing time-dependent experimental as well as the amount of additive ammonium fluoride in solution. Furthermore, the electrochemical measurements were performed among three different morphologies of NiCo2S4 including nanosheets, nanosheets@nanoparticles, and NSNWs structure, which were obtained from different reaction stages. Because the NSNWs structure has relatively high electroactive surface area, conductivity, and effective electron transport pathways, the as-prepared NiCo2S4 NSNWs structure comparing with two other morphologies exhibits the maximum specific capacity o...

154 citations

Journal ArticleDOI
TL;DR: A femtogram nanobalance was demonstrated based on nanotube resonance; it has the potential for measuring the mass of chain-structured large molecules and provides a powerful approach towards nanomechanics of fiberlike nanomaterials with well-characterized defect structures.
Abstract: The bending modulus of individual carbon nanotubes from aligned arrays grown by pyrolysis was measured by in situ electromechanical resonance in transmission electron microscopy (TEM). The bending modulus of nanotubes with point defects was approximately 30 GPa and that of nanotubes with volume defect was 2-3 GPa. The time-decay constant of nanotube resonance in a vacuum of 10(-4) Torr was approximately 85 micros. A femtogram nanobalance was demonstrated based on nanotube resonance; it has the potential for measuring the mass of chain-structured large molecules. The in situ TEM provides a powerful approach towards nanomechanics of fiberlike nanomaterials with well-characterized defect structures.

154 citations

Journal ArticleDOI
TL;DR: In this paper, a novel approach has been taken to use conductive graphene paper (GP) in the fabrication of ultrathin EMI shielding materials, achieving a high shielding performance of up to ∼47.7 dB at a GP thickness of ∼0.1 mm.
Abstract: Ultrathin electromagnetic interference (EMI) shielding materials promise great application potential in portable electronic devices and communication instruments. Lightweight graphene-based materials have been pursued for their exclusive microstructures and unique shielding mechanism. However, the large thickness of the current low-density graphene-based composites still limits their application potential in ultrathin devices. In this work, a novel approach has been taken to use conductive graphene paper (GP) in the fabrication of ultrathin EMI shielding materials. The as-prepared flexible GPs exhibit highly effective shielding capabilities, reaching ∼19.0 dB at ∼0.1 mm in thickness and ∼46.3 dB at ∼0.3 mm in thickness, thus the thinnest GPs having the best shielding performance among graphene-based shielding materials. Double-layered shielding attenuators have been designed and fabricated for a high shielding performance of up to ∼47.7 dB at a GP thickness of ∼0.1 mm. Mechanistically, the high performance should be due to Fabry–Perot resonance, which is unusual in carbon-based shielding materials. The preparation of conductive GPs of superior shielding performance is relatively simple, amenable to large-scale production of ultrathin materials for EMI shielding and electromagnetic attenuators, with broad applications in lightweight portable electronic devices.

154 citations


Authors

Showing all 41904 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Yang Yang1712644153049
Jun Chen136185677368
Jun Lu135152699767
Jie Liu131153168891
Shuai Liu129109580823
Jian Zhou128300791402
Chao Zhang127311984711
Shaobin Wang12687252463
Tao Zhang123277283866
Jian Liu117209073156
Xin Li114277871389
Jianhui Hou11042953265
Hong Wang110163351811
Baoshan Xing10982348944
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

93% related

Northeastern University
58.1K papers, 1.7M citations

92% related

Dalian University of Technology
71.9K papers, 1.1M citations

92% related

Beihang University
73.5K papers, 975.6K citations

91% related

South China University of Technology
69.4K papers, 1.2M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023161
2022807
20214,662
20204,369
20194,164
20183,586