scispace - formally typeset
Search or ask a question
Institution

University of Science and Technology Beijing

EducationBeijing, China
About: University of Science and Technology Beijing is a education organization based out in Beijing, China. It is known for research contribution in the topics: Microstructure & Alloy. The organization has 41558 authors who have published 44473 publications receiving 623229 citations. The organization is also known as: Beijing Steel and Iron Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: A neural network (NN) controller is designed to suppress the vibration of a flexible robotic manipulator system with input deadzone and is able to compensate for the estimated deadzone effect and track the desired trajectory.
Abstract: In this paper, a neural network (NN) controller is designed to suppress the vibration of a flexible robotic manipulator system with input deadzone. The NN aims to approximate the unknown robotic manipulator dynamics and eliminate the effects of input deadzone in the actuators. In order to describe the system more accurately, the model of the flexible manipulator is constructed based on the lumping spring-mass method. Full state feedback NN control is proposed first and output feedback NN control with a high-gain observer is then devised to make the proposed control scheme more practical. The effect of input deadzone is approximated by a radial basis function neural network (RBFNN) and the unknown dynamics of the manipulator is approximated by another RBFNN. The proposed NN control is able to compensate for the estimated deadzone effect and track the desired trajectory. For the stability analysis, the Lyapunov's direct method is used to ensure uniform ultimate boundedness (UUB) of the closed-loop system. Simulations are given to verify the control performance of the NN controllers comparing with the proportional derivative (PD) controller. At last, the experiments are conducted on the Quanser platform to further prove the feasibility and control performance of the NN controllers.

319 citations

Journal ArticleDOI
TL;DR: In this article, a promising approach for recycling high value-added metals from the cathode materials of spent LIBs was presented, where reduction roasting was applied to break LiNixCoyMnzO2 into simple compounds or metals and the effect of several factors such as temperature, carbon dosage and roasting time was assessed on the leaching efficiency of valuable metals.

319 citations

Journal ArticleDOI
TL;DR: In this paper, a low band gap polymer based on benzodithiophene (BDT)-thieno[3,4-b]thiophene backbone, PBDT-TS1, was synthesized following their previous work and the bulk heterojunction (BHJ) material comprising PBDTs1/PC71BM was optimized and characterized.
Abstract: The low band gap polymer based on benzodithiophene (BDT)-thieno[3,4-b]thiophene (TT) backbone, PBDT-TS1, was synthesized following our previous work and the bulk heterojunction (BHJ) material comprising PBDT-TS1/PC71BM was optimized and characterized. By processing the active layer with different additives i.e. 1,8-diiodooctane (DIO), 1-chloronaphthalene (CN) and 1, 8-octanedithiol (ODT) and optimizing the ratio of each additive in the host solvent, a high PCE of 9.98% was obtained under the condition of utilizing 3% DIO as processing additive in CB. The effect of varied additives on photovoltaic performance was illustrated with atomic force microscopy (AFM) and transmission electron microscope (TEM) measurements that explained changes in photovoltaic parameters. These results provide valuable information of solvent additive choice in device optimization of PBDTTT polymers, and the systematic device optimization could be applied in other efficient photovoltaic polymers. Apparently, this work presents a great advance in single junction PSCs, especially in PSCs with conventional architecture.

318 citations

Journal ArticleDOI
TL;DR: The carbon nanostructures and related nanocomposites represent the developing orientation of high‐performance EM wave absorption materials and the shortcomings, challenges, and prospects are presented.
Abstract: With the booming development of electronic information technology, the problems caused by electromagnetic (EMs) waves have gradually become serious, and EM wave absorption materials are playing an essential role in daily life. Carbon nanostructures stand out for their unique structures and properties compared with the other absorption materials. Graphene, carbon nanotubes, and other special carbon nanostructures have become especially significant as EM wave absorption materials in the high-frequency range. Moreover, various nanocomposites based on carbon nanostructures and other lossy materials can be modified as high-performance absorption materials. Here, the EM wave absorption theories of carbon nanostructures are introduced and recent advances of carbon nanostructures for high-frequency EM wave absorption are summarized. Meanwhile, the shortcomings, challenges, and prospects of carbon nanostructures for high-frequency EM wave absorption are presented. Carbon nanostructures are typical EM wave absorption materials being lightweight and having broadband properties. Carbon nanostructures and related nanocomposites represent the developing orientation of high-performance EM wave absorption materials.

318 citations

Journal ArticleDOI
TL;DR: In this article, the effects of variable surface heat flux and first-order chemical reaction on MHD flow and radiation heat transfer of nanofluids against a flat plate in porous medium were investigated.

317 citations


Authors

Showing all 41904 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Yang Yang1712644153049
Jun Chen136185677368
Jun Lu135152699767
Jie Liu131153168891
Shuai Liu129109580823
Jian Zhou128300791402
Chao Zhang127311984711
Shaobin Wang12687252463
Tao Zhang123277283866
Jian Liu117209073156
Xin Li114277871389
Jianhui Hou11042953265
Hong Wang110163351811
Baoshan Xing10982348944
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

93% related

Northeastern University
58.1K papers, 1.7M citations

92% related

Dalian University of Technology
71.9K papers, 1.1M citations

92% related

Beihang University
73.5K papers, 975.6K citations

91% related

South China University of Technology
69.4K papers, 1.2M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023161
2022807
20214,662
20204,369
20194,164
20183,586