scispace - formally typeset
Search or ask a question
Institution

University of Science and Technology Beijing

EducationBeijing, China
About: University of Science and Technology Beijing is a education organization based out in Beijing, China. It is known for research contribution in the topics: Microstructure & Alloy. The organization has 41558 authors who have published 44473 publications receiving 623229 citations. The organization is also known as: Beijing Steel and Iron Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a scalable and efficient fabrication strategy is adopted to yield a sensor consisting of ZnO nanowires and polyurethane fibers, which integrates high stretchability (tolerable strain up to 150%) with three different sensing capabilities, i.e., strain, temperature and UV.
Abstract: Stretchable and multifunctional sensors can be applied in multifunctional sensing devices, safety forewarning equipment, and multiparametric sensing platforms. However, a stretchable and multifunctional sensor was hard to fabricate until now. Herein, a scalable and efficient fabrication strategy is adopted to yield a sensor consisting of ZnO nanowires and polyurethane fibers. The device integrates high stretchability (tolerable strain up to 150%) with three different sensing capabilities, i.e., strain, temperature, and UV. Typically achieved specifications for strain detection are a fast response time of 38 ms, a gauge factor of 15.2, and a high stability of >10 000 cyclic loading tests. Temperature is detected with a high temperature sensitivity of 39.3% °C−1, while UV monitoring features a large ON/OFF ratio of 158.2. With its fiber geometry, mechanical flexibility, and high stretchability, the sensor holds tremendous prospect for multiparametric sensing platforms, including wearable devices.

228 citations

Journal ArticleDOI
TL;DR: The microstructure and compressive properties of Al x (TiVCrMnFeCoNiCu) 100− x ( x ǫ = 0, 11.1, 20 and 40 ) high-entropy alloys were studied in this paper.
Abstract: The microstructure and compressive properties of Al x (TiVCrMnFeCoNiCu) 100− x ( x = 0, 11.1, 20 and 40 at.%) high-entropy alloys were studied. With the increase of Al content, the number of phases in the alloys gradually decreases. When Al content is 20 at.%, only bcc solid-solution structure is found in the alloy. The effect of high mixing entropy does facilitate the formation of simple solid solutions, making the total number of phases well below the maximum equilibrium number allowed by the Gibbs phase rule. The solid-solution strengthening mechanism and the structure transformation from fcc to bcc make the alloys have fairly high compressive strength; among them the compressive strength of Al 11.1 (TiVCrMnFeCoNiCu) 88.9 alloy reaches 2.431 GPa.

228 citations

Journal ArticleDOI
TL;DR: In situ high-temperature synchrotron radiation X-ray diffraction experiments at different pressures of the retained hcp high-entropy alloy reveal that the fcc phase is a stable polymorph at high temperatures, while the hcp structure is more thermodynamically favourable at lower temperatures.
Abstract: Polymorphism, which describes the occurrence of different lattice structures in a crystalline material, is a critical phenomenon in materials science and condensed matter physics. Recently, configuration disorder was compositionally engineered into single lattices, leading to the discovery of high-entropy alloys and high-entropy oxides. For these novel entropy-stabilized forms of crystalline matter with extremely high structural stability, is polymorphism still possible? Here by employing in situ high-pressure synchrotron radiation X-ray diffraction, we reveal a polymorphic transition from face-centred-cubic (fcc) structure to hexagonal-close-packing (hcp) structure in the prototype CoCrFeMnNi high-entropy alloy. The transition is irreversible, and our in situ high-temperature synchrotron radiation X-ray diffraction experiments at different pressures of the retained hcp high-entropy alloy reveal that the fcc phase is a stable polymorph at high temperatures, while the hcp structure is more thermodynamically favourable at lower temperatures. As pressure is increased, the critical temperature for the hcp-to-fcc transformation also rises.

228 citations

Journal ArticleDOI
TL;DR: In this article, a particle-compositing method was used for the first time to disperse different contents of multi-walled carbon nanotubes (CNTs) in micron sized copper powders, which were subsequently consolidated into CNT/Cu composites by spark plasma sintering (SPS).

228 citations

Journal ArticleDOI
TL;DR: In this article, the effect of 3D printing laser power on the microstructure, biocompatibility, mechanical and corrosion properties of SLM 316L were systematically investigated and compared with the traditionally quenched.

227 citations


Authors

Showing all 41904 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Yang Yang1712644153049
Jun Chen136185677368
Jun Lu135152699767
Jie Liu131153168891
Shuai Liu129109580823
Jian Zhou128300791402
Chao Zhang127311984711
Shaobin Wang12687252463
Tao Zhang123277283866
Jian Liu117209073156
Xin Li114277871389
Jianhui Hou11042953265
Hong Wang110163351811
Baoshan Xing10982348944
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

93% related

Northeastern University
58.1K papers, 1.7M citations

92% related

Dalian University of Technology
71.9K papers, 1.1M citations

92% related

Beihang University
73.5K papers, 975.6K citations

91% related

South China University of Technology
69.4K papers, 1.2M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023161
2022807
20214,662
20204,369
20194,164
20183,586