scispace - formally typeset
Search or ask a question
Institution

University of Science and Technology Beijing

EducationBeijing, China
About: University of Science and Technology Beijing is a education organization based out in Beijing, China. It is known for research contribution in the topics: Microstructure & Alloy. The organization has 41558 authors who have published 44473 publications receiving 623229 citations. The organization is also known as: Beijing Steel and Iron Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effects of orientation degree and hot-forging temperature on thermoelectric properties were investigated, and the results showed that the electrical resistivity was reduced by increasing orientation degree, the Seebeck coefficient was increased by raising hot forging temperature, and consequently the power factor was significantly increased.

227 citations

Journal ArticleDOI
TL;DR: In this article, the influence of temperature on the electrochemical and passivation behavior of 2507 super duplex stainless steel in the simulated desulfurized flue gas condensates in thermal power plant chimney is investigated.

226 citations

Journal ArticleDOI
TL;DR: In this paper, the state-of-the-art solution-processable organic photovoltaics (OPV) devices are processed by hazardous halogenated solvents.

226 citations

Journal ArticleDOI
TL;DR: In this paper, an overview of various technologies on the recovery of precious metals from e-waste and spent catalysts is provided, which shows that recycling technologies have been significantly improved in recent years.
Abstract: Precious metals are widely applied in many industry fields due to their excellent corrosion resistance, good electrical conductivity and high catalytic activity. However, the reserves of precious metals falls short of the production globally. The rapid generation of end-of-life products has become the significant resources of precious metals. Among these products, electronic waste (e-waste) and spent catalysts are more concentrated since they account for over 90% of precious metals in industry. This article provides an overview of various technologies on the recovery of precious metals from e-waste and spent catalysts. It shows that recycling technologies have been significantly improved in recent years. The recycling processes have transferred from leaching by aqua regia, cyanide and chlorine in acid solution to less pollution agents leaching. Environment-oriented technologies have been raised great attention in precious metals recycling. The advantages and environmental impacts of these recycling technologies have been discussed in detail. However, there are still some challenges for future promotion. In order to achieve the environment-friendly and sustainable recycling for precious metals with high recovery rate, several considerations have been proposed.

225 citations

Journal ArticleDOI
23 Jul 2020-ACS Nano
TL;DR: It is unveiled that the superior performances of FeP@CNs anode originate from its prominent structural and compositional merits, which render fast electron/ion transport kinetics and abundant active sites for charge storage, thus enabling high-rate and highly durable lithium storage.
Abstract: Conversion-type transition-metal phosphide anode materials with high theoretical capacity usually suffer from low-rate capability and severe capacity decay, which are mainly caused by their inferior electronic conductivities and large volumetric variations together with the poor reversibility of discharge product (Li3P), impeding their practical applications. Herein, guided by density functional theory calculations, these obstacles are simultaneously mitigated by confining amorphous FeP nanoparticles into ultrathin 3D interconnected P-doped porous carbon nanosheets (denoted as FeP@CNs) via a facile approach, forming an intriguing 3D flake-CNs-like configuration. As an anode for lithium-ion batteries (LIBs), the resulting FeP@CNs electrode not only reaches a high reversible capacity (837 mA h g-1 after 300 cycles at 0.2 A g-1) and an exceptional rate capability (403 mA h g-1 at 16 A g-1) but also exhibits extraordinary durability (2500 cycles, 563 mA h g-1 at 4 A g-1, 98% capacity retention). By combining DFT calculations, in situ transmission electron microscopy, and a suite of ex situ microscopic and spectroscopic techniques, we show that the superior performances of FeP@CNs anode originate from its prominent structural and compositional merits, which render fast electron/ion-transport kinetics and abundant active sites (amorphous FeP nanoparticles and structural defects in P-doped CNs) for charge storage, promote the reversibility of conversion reactions, and buffer the volume variations while preventing pulverization/aggregation of FeP during cycling, thus enabling a high rate and highly durable lithium storage. Furthermore, a full cell composed of the prelithiated FeP@CNs anode and commercial LiFePO4 cathode exhibits impressive rate performance while maintaining superior cycling stability. This work fundamentally and experimentally presents a facile and effective structural engineering strategy for markedly improving the performance of conversion-type anodes for advanced LIBs.

225 citations


Authors

Showing all 41904 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Yang Yang1712644153049
Jun Chen136185677368
Jun Lu135152699767
Jie Liu131153168891
Shuai Liu129109580823
Jian Zhou128300791402
Chao Zhang127311984711
Shaobin Wang12687252463
Tao Zhang123277283866
Jian Liu117209073156
Xin Li114277871389
Jianhui Hou11042953265
Hong Wang110163351811
Baoshan Xing10982348944
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

93% related

Northeastern University
58.1K papers, 1.7M citations

92% related

Dalian University of Technology
71.9K papers, 1.1M citations

92% related

Beihang University
73.5K papers, 975.6K citations

91% related

South China University of Technology
69.4K papers, 1.2M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023161
2022807
20214,664
20204,369
20194,164
20183,586