scispace - formally typeset
Search or ask a question
Institution

University of Science and Technology Beijing

EducationBeijing, China
About: University of Science and Technology Beijing is a education organization based out in Beijing, China. It is known for research contribution in the topics: Microstructure & Alloy. The organization has 41558 authors who have published 44473 publications receiving 623229 citations. The organization is also known as: Beijing Steel and Iron Institute.


Papers
More filters
Journal ArticleDOI
10 Jan 2020-Science
TL;DR: Cryogenic atom probe observations map hydrogen to a variety of interfaces, providing insight into hydrogen embrittlement, and direct observation of hydrogen at carbon-rich dislocations and grain boundaries provides validation for embrittlements models.
Abstract: Hydrogen embrittlement of high-strength steel is an obstacle for using these steels in sustainable energy production. Hydrogen embrittlement involves hydrogen-defect interactions at multiple-length scales. However, the challenge of measuring the precise location of hydrogen atoms limits our understanding. Thermal desorption spectroscopy can identify hydrogen retention or trapping, but data cannot be easily linked to the relative contributions of different microstructural features. We used cryo-transfer atom probe tomography to observe hydrogen at specific microstructural features in steels. Direct observation of hydrogen at carbon-rich dislocations and grain boundaries provides validation for embrittlement models. Hydrogen observed at an incoherent interface between niobium carbides and the surrounding steel provides direct evidence that these incoherent boundaries can act as trapping sites. This information is vital for designing embrittlement-resistant steels.

222 citations

Journal ArticleDOI
TL;DR: A comprehensive review on recent important development and progress in fiber SCs is provided, with respect to the active electrode materials, device configurations, functions, integrations and the exploration of some functions including stretchability and self-healing.
Abstract: Fiber supercapacitors (SCs), with their small size and weight, excellent flexibility and deformability, and high capacitance and power density, are recognized as one of the most robust power supplies available for wearable electronics. They can be woven into breathable textiles or integrated into different functional materials to fit curved surfaces for use in day-to-day life. A comprehensive review on recent important development and progress in fiber SCs is provided, with respect to the active electrode materials, device configurations, functions, integrations. Active electrode materials based on different electrochemical mechanisms and intended to improve performance including carbon-based materials, metal oxides, and hybrid composites, are first summarized. The three main types of fiber SCs, namely parallel, twist, and coaxial structures, are then discussed, followed by the exploration of some functions including stretchability and self-healing. Miniaturized integration of fiber SCs to obtain flexible energy fibers and integrated sensing systems is also discussed. Finally, a short conclusion is made, combining with comments on the current challenges and potential solutions in this field.

222 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the requirements and needs for new, advanced materials for the fusion-facing components of a tokamak/or stellarator reactor, including fiber-reinforced and laminated structures, and mechanically alloyed tungsten materials.
Abstract: Plasma-facing materials and components in a fusion reactor are the interface between the plasma and the material part. The operational conditions in this environment are probably the most challenging parameters for any material: high power loads and large particle and neutron fluxes are simultaneously impinging at their surfaces. To realize fusion in a tokamak or stellarator reactor, given the proven geometries and technological solutions, requires an improvement of the thermo-mechanical capabilities of currently available materials. In its first part this article describes the requirements and needs for new, advanced materials for the plasma-facing components. Starting points are capabilities and limitations of tungsten-based alloys and structurally stabilized materials. Furthermore, material requirements from the fusion-specific loading scenarios of a divertor in a water-cooled configuration are described, defining directions for the material development. Finally, safety requirements for a fusion reactor with its specific accident scenarios and their potential environmental impact lead to the definition of inherently passive materials, avoiding release of radioactive material through intrinsic material properties. The second part of this article demonstrates current material development lines answering the fusion-specific requirements for high heat flux materials. New composite materials, in particular fiber-reinforced and laminated structures, as well as mechanically alloyed tungsten materials, allow the extension of the thermo-mechanical operation space towards regions of extreme steady-state and transient loads. Self-passivating

222 citations

Journal ArticleDOI
TL;DR: The proposed KPI prediction and diagnosis scheme is finally applied to an industrial hot strip mill, and the results demonstrate the effectiveness of the proposed scheme.
Abstract: In this paper, a data-driven scheme of key performance indicator (KPI) prediction and diagnosis is developed for complex industrial processes. For static processes, a KPI prediction and diagnosis approach is proposed in order to improve the prediction performance. In comparison with the standard partial least squares (PLS) method, the alternative approach significantly simplifies the computation procedure. By means of a data-driven realization of the so-called left coprime factorization (LCF) of a process, efficient KPI prediction, and diagnosis algorithms are developed for dynamic processes, respectively, with and without measurable KPIs. The proposed KPI prediction and diagnosis scheme is finally applied to an industrial hot strip mill, and the results demonstrate the effectiveness of the proposed scheme.

221 citations

Journal ArticleDOI
TL;DR: In this paper, a high performance thermoelectric oxyselenide BiCuSeO ceramic with ZT > 1.1 at 823 K and higher average ZT value (ZTave ≈ 0.8) is obtained.
Abstract: A high-performance thermoelectric oxyselenide BiCuSeO ceramic with ZT > 1.1 at 823 K and higher average ZT value (ZTave ≈0.8) is obtained. The heavy doping element and nanostructures can effectively tune its electronic structure, hole concentration, and thermal conductivity, resulting in substantially enhanced mobility, power factor, and thus ZT value. This work provides a path to high-performance thermoelectric ceramics.

220 citations


Authors

Showing all 41904 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Yang Yang1712644153049
Jun Chen136185677368
Jun Lu135152699767
Jie Liu131153168891
Shuai Liu129109580823
Jian Zhou128300791402
Chao Zhang127311984711
Shaobin Wang12687252463
Tao Zhang123277283866
Jian Liu117209073156
Xin Li114277871389
Jianhui Hou11042953265
Hong Wang110163351811
Baoshan Xing10982348944
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

93% related

Northeastern University
58.1K papers, 1.7M citations

92% related

Dalian University of Technology
71.9K papers, 1.1M citations

92% related

Beihang University
73.5K papers, 975.6K citations

91% related

South China University of Technology
69.4K papers, 1.2M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023161
2022807
20214,662
20204,369
20194,164
20183,586