scispace - formally typeset
Search or ask a question
Institution

University of Science and Technology Beijing

EducationBeijing, China
About: University of Science and Technology Beijing is a education organization based out in Beijing, China. It is known for research contribution in the topics: Microstructure & Alloy. The organization has 41558 authors who have published 44473 publications receiving 623229 citations. The organization is also known as: Beijing Steel and Iron Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel class of pseudo solid-state electrolytes with biomimetic ionic channels is reported herein, achieved by complexing the anions of an electrolyte to the open metal sites of metal-organic frameworks (MOFs), which transforms the MOF scaffolds into ionic-channel analogs with lithium-ion conduction and low activation energy.
Abstract: Solid-state electrolytes are the key to the development of lithium-based batteries with dramatically improved energy density and safety. Inspired by ionic channels in biological systems, a novel class of pseudo solid-state electrolytes with biomimetic ionic channels is reported herein. This is achieved by complexing the anions of an electrolyte to the open metal sites of metal-organic frameworks (MOFs), which transforms the MOF scaffolds into ionic-channel analogs with lithium-ion conduction and low activation energy. This work suggests the emergence of a new class of pseudo solid-state lithium-ion conducting electrolytes.

213 citations

Journal ArticleDOI
TL;DR: In this article, a novel type of quantum dot (Ph-CN) is manufactured from graphitic carbon nitride by "lining" the carbon-nitride structure with phenyl groups through supramolecular preorganization.
Abstract: A novel type of quantum dot (Ph-CN) is manufactured from graphitic carbon nitride by “lining” the carbon nitride structure with phenyl groups through supramolecular preorganization. This approach requires no chemical etching or hydrothermal treatments like other competing nanoparticle syntheses and is easy and safe to use. The Ph-CN nanoparticles exhibit bright, tunable fluorescence, with a high quantum yield of 48.4 % in aqueous colloidal suspensions. Interestingly, the observed Stokes shift of approximately 200 nm is higher than the maximum values reported for carbon nitride based fluorophores. The high quantum yield and the large Stokes shift are related to the structural surface organization of the phenyl groups, which affects the π-electron delocalization in the conjugated carbon nitride networks and induces colloidal stability. The remarkable performance of the Ph-CN nanoparticles in imaging is demonstrated by a simple incubation study with HeLa cells.

213 citations

Journal ArticleDOI
20 Aug 2021-Science
TL;DR: In this paper, a directionally solidified eutectic high-entropy alloy (EHEA) was proposed to reconcile crack tolerance and high elongation in malleable materials.
Abstract: In human-made malleable materials, microdamage such as cracking usually limits material lifetime. Some biological composites, such as bone, have hierarchical microstructures that tolerate cracks but cannot withstand high elongation. We demonstrate a directionally solidified eutectic high-entropy alloy (EHEA) that successfully reconciles crack tolerance and high elongation. The solidified alloy has a hierarchically organized herringbone structure that enables bionic-inspired hierarchical crack buffering. This effect guides stable, persistent crystallographic nucleation and growth of multiple microcracks in abundant poor-deformability microstructures. Hierarchical buffering by adjacent dynamic strain-hardened features helps the cracks to avoid catastrophic growth and percolation. Our self-buffering herringbone material yields an ultrahigh uniform tensile elongation (~50%), three times that of conventional nonbuffering EHEAs, without sacrificing strength.

213 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the electrical and thermal transport properties of lead-based chalcogenides (PbTe, PbSe, and PbS) with special emphasis on the lattice and the bipolar thermal conductivity.

213 citations

Journal ArticleDOI
TL;DR: Simulation results verify that to achieve the same accuracy, the proposed a priori aided channel tracking scheme requires much lower pilot overhead and signal-to-noise ratio (SNR) than the conventional schemes.
Abstract: The recent concept of beamspace multiple input multiple output (MIMO) with discrete lens array can utilize beam selection to reduce the number of radio-frequency chains (RF) required in terahertz (THz) massive MIMO systems. However, to achieve the capacity-approaching performance, beam selection requires information on a beamspace channel of large size. This is difficult to obtain since the user mobility usually leads to the fast variation of THz beamspace channels, and the conventional real-time channel estimation schemes involve unaffordable pilot overhead. To solve this problem, in this paper, we propose the a priori aided (PA) channel tracking scheme. Specifically, by considering a practical user motion model, we first excavate a temporal variation law of the physical direction between the base station and each mobile user. Then, based on this law and the special sparse structure of THz beamspace channels, we propose to utilize the obtained beamspace channels in the previous time slots to predict the prior information of the beamspace channel in the following time slot without channel estimation. Finally, aided by the obtained prior information, the time-varying beamspace channels can be tracked with low pilot overhead. Simulation results verify that to achieve the same accuracy, the proposed PA channel tracking scheme requires much lower pilot overhead and signal-to-noise ratio (SNR) than the conventional schemes.

212 citations


Authors

Showing all 41904 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Yang Yang1712644153049
Jun Chen136185677368
Jun Lu135152699767
Jie Liu131153168891
Shuai Liu129109580823
Jian Zhou128300791402
Chao Zhang127311984711
Shaobin Wang12687252463
Tao Zhang123277283866
Jian Liu117209073156
Xin Li114277871389
Jianhui Hou11042953265
Hong Wang110163351811
Baoshan Xing10982348944
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

93% related

Northeastern University
58.1K papers, 1.7M citations

92% related

Dalian University of Technology
71.9K papers, 1.1M citations

92% related

Beihang University
73.5K papers, 975.6K citations

91% related

South China University of Technology
69.4K papers, 1.2M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023161
2022807
20214,662
20204,369
20194,164
20183,586