scispace - formally typeset
Search or ask a question
Institution

University of Science and Technology Beijing

EducationBeijing, China
About: University of Science and Technology Beijing is a education organization based out in Beijing, China. It is known for research contribution in the topics: Microstructure & Alloy. The organization has 41558 authors who have published 44473 publications receiving 623229 citations. The organization is also known as: Beijing Steel and Iron Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: A dual‐salt (LiTFSI‐LiPF6) gel polymer electrolyte (GPE) with 3D cross‐linked polymer network is designed to address the issues of building a stable solid electrolyte interphase (SEI) and restraining the dendrite growth with lithium metal batteries.
Abstract: Lithium metal batteries show great potential in energy storage because of their high energy density. Nevertheless, building a stable solid electrolyte interphase (SEI) and restraining the dendrite growth are difficult to realize with traditional liquid electrolytes. Solid and gel electrolytes are considered promising candidates to restrain the dendrites growth, while they are still limited by low ionic conductivity and incompatible interphases. Herein, a dual-salt (LiTFSI-LiPF6) gel polymer electrolyte (GPE) with 3D cross-linked polymer network is designed to address these issues. By introducing a dual salt in 3D structure fabricated using an in situ polymerization method, the 3D-GPE exhibits a high ionic conductivity (0.56 mS cm-1 at room temperature) and builds a robust and conductive SEI on the lithium metal surface. Consequently, the Li metal batteries using 3D-GPE can markedly reduce the dendrite growth and achieve 87.93% capacity retention after cycling for 300 cycles. This work demonstrates a promising method to design electrolytes for lithium metal batteries.

183 citations

Journal ArticleDOI
01 Apr 2016-Carbon
TL;DR: In this paper, a novel strategy to fabricate strong and thermostable polymeric graphene/silica textile composites for practical microwave absorption applications is proposed, where a unique silica textile coupled with freeze-drying method is employed as the critical factor in the formation of the polymeric composites.

182 citations

Journal ArticleDOI
TL;DR: In this article, the authors optimized the thickness and porosity of TiO2 mesoporous film for better distribution of quantum dots to enhance the performance of CdS/CdSe quantum dot cosensitized solar cells.
Abstract: The thickness and porosity of TiO2 mesoporous film were optimized for better distribution of quantum dots to enhance the performance of CdS/CdSe quantum dot cosensitized solar cells. The CdS and CdSe quantum dots were prepared on TiO2 mesoporous film through a successive ion layer absorption and reaction (SILAR) method and a chemical bath deposition (CBD) method, respectively. It was found that the distribution of quantum dots was inhomogeneous from the surface to the interior of the TiO2 film, being mainly concentrated at the upper layer of the TiO2 film. As a result, simply increasing film thickness did not make significant contribution to improving solar cell efficiency since only a small portion of quantum dots might access the interior of the film, leading to an exposure of TiO2 nanoparticles in electrolyte and thus reducing the electron lifetime due to increased charge recombination rate. Our study revealed that the efficiency could reach its maximum, ∼4.62%, with the TiO2 film, the thickness of whi...

182 citations

Journal ArticleDOI
TL;DR: Experimental results show that this fog computing based face identification and resolution scheme can effectively save bandwidth and improve efficiency of face Identification and resolution.
Abstract: The identification and resolution technology are the prerequisite for realizing identity consistency of physical–cyber space mapping in the Internet of Things (IoT). Face, as a distinctive noncoded and unstructured identifier, has especial advantages in identification applications. With the increase of face identification based applications, the requirements for computation, communication, and storage capability are becoming higher and higher. To solve this problem, we propose a fog computing based face identification and resolution scheme. Face identifier is first generated by the identification system model to identify an individual. Then, a fog computing based resolution framework is proposed to efficiently resolve the individual's identity. Some computing overhead is offloaded from a cloud to network edge devices in order to improve processing efficiency and reduce network transmission. Finally, a prototype system based on local binary patterns (LBP) identifier is implemented to evaluate the scheme. Experimental results show that this scheme can effectively save bandwidth and improve efficiency of face identification and resolution.

182 citations

Journal ArticleDOI
01 Nov 2016
TL;DR: The data-based adaptive critic designs can be developed to solve the Hamilton-Jacobi-Bellman equation corresponding to the transformed optimal control problem and the uniform ultimate boundedness of the closed-loop system is proved by using the Lyapunov approach.
Abstract: In this paper, the infinite-horizon robust optimal control problem for a class of continuous-time uncertain nonlinear systems is investigated by using data-based adaptive critic designs. The neural network identification scheme is combined with the traditional adaptive critic technique, in order to design the nonlinear robust optimal control under uncertain environment. First, the robust optimal controller of the original uncertain system with a specified cost function is established by adding a feedback gain to the optimal controller of the nominal system. Then, a neural network identifier is employed to reconstruct the unknown dynamics of the nominal system with stability analysis. Hence, the data-based adaptive critic designs can be developed to solve the Hamilton–Jacobi–Bellman equation corresponding to the transformed optimal control problem. The uniform ultimate boundedness of the closed-loop system is also proved by using the Lyapunov approach. Finally, two simulation examples are presented to illustrate the effectiveness of the developed control strategy.

182 citations


Authors

Showing all 41904 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Yang Yang1712644153049
Jun Chen136185677368
Jun Lu135152699767
Jie Liu131153168891
Shuai Liu129109580823
Jian Zhou128300791402
Chao Zhang127311984711
Shaobin Wang12687252463
Tao Zhang123277283866
Jian Liu117209073156
Xin Li114277871389
Jianhui Hou11042953265
Hong Wang110163351811
Baoshan Xing10982348944
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

93% related

Northeastern University
58.1K papers, 1.7M citations

92% related

Dalian University of Technology
71.9K papers, 1.1M citations

92% related

Beihang University
73.5K papers, 975.6K citations

91% related

South China University of Technology
69.4K papers, 1.2M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023161
2022807
20214,664
20204,369
20194,164
20183,586