scispace - formally typeset
Search or ask a question

Showing papers by "University of Siena published in 2016"


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy1  +1008 moreInstitutions (96)
TL;DR: This is the first direct detection of gravitational waves and the first observation of a binary black hole merger, and these observations demonstrate the existence of binary stellar-mass black hole systems.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of $1.0 \times 10^{-21}$. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 {\sigma}. The source lies at a luminosity distance of $410^{+160}_{-180}$ Mpc corresponding to a redshift $z = 0.09^{+0.03}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+5}_{-4} M_\odot$ and $29^{+4}_{-4} M_\odot$, and the final black hole mass is $62^{+4}_{-4} M_\odot$, with $3.0^{+0.5}_{-0.5} M_\odot c^2$ radiated in gravitational waves. All uncertainties define 90% credible intervals.These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

9,596 citations


Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, M. R. Abernathy3  +970 moreInstitutions (114)
TL;DR: This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.
Abstract: We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5 σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4+0.7−0.9×10−22. The inferred source-frame initial black hole masses are 14.2+8.3−3.7M⊙ and 7.5+2.3−2.3M⊙ and the final black hole mass is 20.8+6.1−1.7M⊙. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440+180−190 Mpc corresponding to a redshift 0.09+0.03−0.04. All uncertainties define a 90 % credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

3,448 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, M. R. Abernathy1  +976 moreInstitutions (107)
TL;DR: It is found that the final remnant's mass and spin, as determined from the low-frequency and high-frequency phases of the signal, are mutually consistent with the binary black-hole solution in general relativity.
Abstract: The LIGO detection of GW150914 provides an unprecedented opportunity to study the two-body motion of a compact-object binary in the large-velocity, highly nonlinear regime, and to witness the final merger of the binary and the excitation of uniquely relativistic modes of the gravitational field. We carry out several investigations to determine whether GW150914 is consistent with a binary black-hole merger in general relativity. We find that the final remnant’s mass and spin, as determined from the low-frequency (inspiral) and high-frequency (postinspiral) phases of the signal, are mutually consistent with the binary black-hole solution in general relativity. Furthermore, the data following the peak of GW150914 are consistent with the least-damped quasinormal mode inferred from the mass and spin of the remnant black hole. By using waveform models that allow for parametrized general-relativity violations during the inspiral and merger phases, we perform quantitative tests on the gravitational-wave phase in the dynamical regime and we determine the first empirical bounds on several high-order post-Newtonian coefficients. We constrain the graviton Compton wavelength, assuming that gravitons are dispersed in vacuum in the same way as particles with mass, obtaining a 90%-confidence lower bound of 1013 km. In conclusion, within our statistical uncertainties, we find no evidence for violations of general relativity in the genuinely strong-field regime of gravity.

1,421 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy3  +978 moreInstitutions (112)
TL;DR: The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers as discussed by the authors.
Abstract: The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper we present full results from a search for binary black hole merger signals with total masses up to 100M⊙ and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5σ over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance, which has a 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations we infer stellar-mass binary black hole merger rates lying in the range 9−240Gpc−3yr−1. These observations are beginning to inform astrophysical predictions of binary black hole formation rates, and indicate that future observing runs of the Advanced detector network will yield many more gravitational wave detections.

1,172 citations


Journal ArticleDOI
TL;DR: As adjuvant therapy for high-risk stage III melanoma, ipilimumab at a dose of 10 mg per kilogram resulted in significantly higher rates of recurrence- free survival, overall survival, and distant metastasis-free survival than placebo.
Abstract: BackgroundOn the basis of data from a phase 2 trial that compared the checkpoint inhibitor ipilimumab at doses of 0.3 mg, 3 mg, and 10 mg per kilogram of body weight in patients with advanced melanoma, this phase 3 trial evaluated ipilimumab at a dose of 10 mg per kilogram in patients who had undergone complete resection of stage III melanoma. MethodsAfter patients had undergone complete resection of stage III cutaneous melanoma, we randomly assigned them to receive ipilimumab at a dose of 10 mg per kilogram (475 patients) or placebo (476) every 3 weeks for four doses, then every 3 months for up to 3 years or until disease recurrence or an unacceptable level of toxic effects occurred. Recurrence-free survival was the primary end point. Secondary end points included overall survival, distant metastasis–free survival, and safety. ResultsAt a median follow-up of 5.3 years, the 5-year rate of recurrence-free survival was 40.8% in the ipilimumab group, as compared with 30.3% in the placebo group (hazard ratio ...

1,037 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy1  +984 moreInstitutions (116)
TL;DR: The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity.
Abstract: On September 14, 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterise the properties of the source and its parameters. The data around the time of the event were analysed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of $36^{+5}_{-4} M_\odot$ and $29^{+4}_{-4} M_\odot$ (for each parameter we report the median value and the range of the 90% credible interval). The dimensionless spin magnitude of the more massive black hole is bound to be $0.7$ (at 90% probability). The luminosity distance to the source is $410^{+160}_{-180}$ Mpc, corresponding to a redshift $0.09^{+0.03}_{-0.04}$ assuming standard cosmology. The source location is constrained to an annulus section of $590$ deg$^2$, primarily in the southern hemisphere. The binary merges into a black hole of $62^{+4}_{-4} M_\odot$ and spin $0.67^{+0.05}_{-0.07}$. This black hole is significantly more massive than any other known in the stellar-mass regime.

874 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy1  +961 moreInstitutions (100)
TL;DR: The discovery of the GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black-hole systems that inspiral and merge within the age of the Universe as mentioned in this paper.
Abstract: The discovery of the gravitational-wave source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black-hole systems that inspiral and merge within the age of the Universe. Such black-hole mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively "heavy" black holes (≳25M⊙) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with metallicity lower than ∼1/2 of the solar value. The rate of binary black-hole mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (≳1Gpc−3yr−1) from both types of formation models. The low measured redshift (z∼0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either binary black-hole formation in a low-mass galaxy in the local Universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-black-hole formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and gravitational-wave detectors in space.

742 citations


Journal ArticleDOI
09 Jun 2016-Nature
TL;DR: In this article, the authors analyse genome-wide data from 51 Eurasians from ~45,000-7,000 years ago and find that the proportion of Neanderthal DNA decreased from 3-6% to around 2%, consistent with natural selection against Neanderthal variants in modern humans.
Abstract: Modern humans arrived in Europe ~45,000 years ago, but little is known about their genetic composition before the start of farming ~8,500 years ago. Here we analyse genome-wide data from 51 Eurasians from ~45,000-7,000 years ago. Over this time, the proportion of Neanderthal DNA decreased from 3-6% to around 2%, consistent with natural selection against Neanderthal variants in modern humans. Whereas there is no evidence of the earliest modern humans in Europe contributing to the genetic composition of present-day Europeans, all individuals between ~37,000 and ~14,000 years ago descended from a single founder population which forms part of the ancestry of present-day Europeans. An ~35,000-year-old individual from northwest Europe represents an early branch of this founder population which was then displaced across a broad region, before reappearing in southwest Europe at the height of the last Ice Age ~19,000 years ago. During the major warming period after ~14,000 years ago, a genetic component related to present-day Near Easterners became widespread in Europe. These results document how population turnover and migration have been recurring themes of European prehistory.

702 citations


Journal ArticleDOI
University of Utah1, University of Colorado Boulder2, Stanford University3, Oregon Health & Science University4, University of Chicago5, Rush University Medical Center6, University of Barcelona7, Harvard University8, Vanderbilt University9, University of Arizona10, University of Texas Health Science Center at Houston11, University of Pennsylvania12, Emory University13, Université de Montréal14, Samsung Medical Center15, University of Auckland16, University of Pittsburgh17, University of Amsterdam18, University of Ioannina19, University of California, San Francisco20, Eastern Virginia Medical School21, University of New South Wales22, Katholieke Universiteit Leuven23, Guy's and St Thomas' NHS Foundation Trust24, University of Lorraine25, University of British Columbia26, Northwestern University27, Georgia Regents University28, Johns Hopkins University29, New York University30, Korea University31, University of Texas at Austin32, Uniformed Services University of the Health Sciences33, Jikei University School of Medicine34, University of Washington35, University of Siena36, Medical College of Wisconsin37, University of Adelaide38, West Virginia University39, Innsbruck Medical University40, Pusan National University41, University of Calgary42, Medical University of South Carolina43, University of North Carolina at Chapel Hill44, Cleveland Clinic45, Loyola University Chicago46, Cornell University47, Temple University48, University of São Paulo49, National University of Singapore50, San Antonio Military Medical Center51, University of Alabama at Birmingham52, University of Alberta53, Capital Medical University54
TL;DR: This dissertation aims to provide a history of Chinese medical practice in the United States from 1989 to 2002, a period chosen in order to explore its roots as well as specific cases up to and including the year in which descriptions of “modern China” began to circulate.
Abstract: Background The body of knowledge regarding rhinosinusitis(RS) continues to expand, with rapid growth in number of publications, yet substantial variability in the quality of those presentations. In an effort to both consolidate and critically appraise this information, rhinologic experts from around the world have produced the International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR:RS). Methods Evidence-based reviews with recommendations(EBRRs) were developed for scores of topics, using previously reported methodology. Where existing evidence was insufficient for an EBRR, an evidence-based review (EBR)was produced. The sections were then synthesized and the entire manuscript was then reviewed by all authors for consensus. Results The resulting ICAR:RS document addresses multiple topics in RS, including acute RS (ARS), chronic RS (CRS)with and without nasal polyps (CRSwNP and CRSsNP), recurrent acute RS (RARS), acute exacerbation of CRS (AECRS), and pediatric RS. Conclusion As a critical review of the RS literature, ICAR:RS provides a thorough review of pathophysiology and evidence-based recommendations for medical and surgical treatment. It also demonstrates the significant gaps in our understanding of the pathophysiology and optimal management of RS. Too often the foundation upon which these recommendations are based is comprised of lower level evidence. It is our hope that this summary of the evidence in RS will point out where additional research efforts may be directed.

645 citations


Journal ArticleDOI
TL;DR: State-of-the-art MRI findings in patients presenting with a clinically isolated syndrome were discussed in a MAGNIMS workshop, the goal of which was to provide an evidence-based and expert-opinion consensus on diagnostic MRI criteria modifications.
Abstract: In patients presenting with a clinically isolated syndrome, MRI can support and substitute clinical information in the diagnosis of multiple sclerosis by showing disease dissemination in space and time and by helping to exclude disorders that can mimic multiple sclerosis. MRI criteria were first included in the diagnostic work-up for multiple sclerosis in 2001, and since then several modifications to the criteria have been proposed in an attempt to simplify lesion-count models for showing disease dissemination in space, change the timing of MRI scanning to show dissemination in time, and increase the value of spinal cord imaging. Since the last update of these criteria, new data on the use of MRI to establish dissemination in space and time have become available, and MRI technology has improved. State-of-the-art MRI findings in these patients were discussed in a MAGNIMS workshop, the goal of which was to provide an evidence-based and expert-opinion consensus on proposed modifications to MRI criteria for the diagnosis of multiple sclerosis.

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy1  +955 moreInstitutions (96)
TL;DR: Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016, and observed a transient gravitational-wave signal determined to be the coalescence of two black holes.
Abstract: Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016. With a strain sensitivity of $10^{-23}/\sqrt{\mathrm{Hz}}$ at 100 Hz, the product of observable volume and measurement time exceeded that of all previous runs within the first 16 days of coincident observation. On September 14th, 2015 the Advanced LIGO detectors observed a transient gravitational-wave signal determined to be the coalescence of two black holes [Phys. Rev. Lett. 116, 061102 (2016)], launching the era of gravitational-wave astronomy. The event, GW150914, was observed with a combined signal-to-noise ratio of 24 in coincidence by the two detectors. Here we present the main features of the detectors that enabled this observation. At full sensitivity, the Advanced LIGO detectors are designed to deliver another factor of three improvement in the signal-to-noise ratio for binary black hole systems similar in masses to GW150914.

Journal ArticleDOI
Jelena Aleksić1, Stefano Ansoldi2, Louis Antonelli3, P. Antoranz4  +161 moreInstitutions (18)
TL;DR: In this paper, the MAGIC-I camera and its trigger system were replaced with a new one for low and medium zenith angles to assess the key performance parameters of MAGIC stereo system for point-like sources with Crab Nebula-like spectrum.

Journal ArticleDOI
TL;DR: The histological picture that characterizes both groups especially after 90 days of exposure, suggests that the intestinal functions can be in some cases totally compromised, and the impact of increasing microplastics pollution on the marine trophic web is underline.

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy1  +977 moreInstitutions (106)
TL;DR: In this paper, the results of a matched-filter search using relativistic models of compact-object binaries that recovered GW150914 as the most significant event during the coincident observations between the two LIGO detectors were reported.
Abstract: On September 14, 2015, at 09∶50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) simultaneously observed the binary black hole merger GW150914. We report the results of a matched-filter search using relativistic models of compact-object binaries that recovered GW150914 as the most significant event during the coincident observations between the two LIGO detectors from September 12 to October 20, 2015 GW150914 was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203000 years, equivalent to a significance greater than 5.1 σ.

Journal ArticleDOI
TL;DR: Screening for MC4R could be important for directing the carriers of mutations towards therapy including partial agonists of theMC4R that could normalize their appetite and inhibit compulsive eating.
Abstract: Obesity is a major public health concern; despite evidence of high heritability, the genetic causes of obesity remain unclear. In this study, we assessed the presence of mutations in three genes involved in the hypothalamic leptin-melanocortin regulation pathway (leptin, LEP; leptin receptor, LEPR; and melanocortin-4 receptor, MC4R), which is important for energy homeostasis in the body, in a group of patients with severe obesity. For this study, we selected 77 patients who had undergone bariatric surgery and had a pre-operative body mass index (BMI) >35 kg/m2, early onset and a family history of being overweight. Candidate genes were screened by direct sequence analysis to search for rare genetic variations. The common LEP -2548 G/A polymorphism was also evaluated for its influence on the BMI (in obesity patients) and for obesity risk, using a case-control study involving 117 healthy individuals. Two different non-synonymous alterations in MC4R were found in two patients: the p.(Thr112Met), previously described in the literature as a probable gene involved in the obesity phenotype, and the novel p.(Tyr302Asp) variant, predicted to be pathogenic by in silico evaluations and family segregation studies. The LEP -2548 G/A polymorphism was not associated with the BMI or obesity risk. In conclusion, we have reported a novel mutation in MC4R in a family of Italian patients with severe obesity. Screening for MC4R could be important for directing the carriers of mutations towards therapy including partial agonists of the MC4R that could normalize their appetite and inhibit compulsive eating. Next-generation sequencing could be used to clarify the genetic basis of obesity in the future.

Journal ArticleDOI
TL;DR: This review deals with the redox properties and photoluminescence behavior of this collection of compounds, as well as their influence on the properties of materials and devices whose working principles are related to electron-transfer or electron-promotion phenomena.
Abstract: Icosahedral boranes, carboranes, and metallacarboranes are extraordinarily robust compounds with desirable properties such as thermal and redox stability, chemical inertness, low nucleophilicity, and high hydrophobicity, making them attractive for several applications such as medicine, nanomaterials, molecular electronics, energy, catalysis, environmental chemistry, and other areas. The hydrogen atoms in these clusters can be replaced by convenient groups that open the way to a chemical alternative to conventional "organic" or "organometallic" realms. Icosahedral boron cluster derivatives have been reviewed from different perspectives; however, there is a need for a review dedicated to the redox and photophysical characteristics of easily accessible borane and carborane derivatives, which are excellent materials for a wide range of applications. This review deals with the redox properties and photoluminescence behavior of this collection of compounds, as well as their influence on the properties of materials and devices whose working principles are related to electron-transfer or electron-promotion phenomena. We hope that this review will be of great value to boron cluster scientists and researchers working in the photoluminescence and electrochemistry fields who are interested in exploring the possibilities of these unique and promising systems.

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy1  +953 moreInstitutions (106)
TL;DR: It is concluded that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, is potentially measurable by the Advanced LIGO and Advanced Virgo detectors operating at their projected final sensitivity.
Abstract: The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses $\gtrsim 30\, \text{M}_\odot$, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO/Virgo band for stochastic backgrounds (near 25 Hz), we predict $\Omega_\text{GW}(f=25 Hz) = 1.1_{-0.9}^{+2.7} \times 10^{-9}$ with 90\% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We conclude that this background is potentially measurable by the Advanced LIGO/Virgo detectors operating at their projected final sensitivity.

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, M. R. Abernathy1  +999 moreInstitutions (109)
TL;DR: The transient noise backgrounds used to determine the significance of the event (designated GW150914) are described and the results of investigations into potential correlated or uncorrelated sources of transient noise in the detectors around the time of theevent are presented.
Abstract: On 14 September 2015, a gravitational wave signal from a coalescing black hole binary system was observed by the Advanced LIGO detectors. This paper describes the transient noise backgrounds used to determine the significance of the event (designated GW150914) and presents the results of investigations into potential correlated or uncorrelated sources of transient noise in the detectors around the time of the event. The detectors were operating nominally at the time of GW150914. We have ruled out environmental influences and non-Gaussian instrument noise at either LIGO detector as the cause of the observed gravitational wave signal.

Journal ArticleDOI
TL;DR: The findings suggest that BIANCA, which will be freely available as part of the FSL package, is a reliable method for automated WMH segmentation in large cross-sectional cohort studies.

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, M. R. Abernathy1  +1619 moreInstitutions (220)
TL;DR: In this article, the sky localization of the first observed compact binary merger is presented, where the authors describe the low-latency analysis of the LIGO data and present a sky localization map.
Abstract: A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams.

Journal ArticleDOI
TL;DR: Polycystic ovary syndrome is a complex endocrine disorder affecting 5–10 % of women of reproductive age and patients have a higher risk of metabolic and cardiovascular diseases and their related morbidity, if compared to the general population.
Abstract: Polycystic ovary syndrome (PCOS) is a complex endocrine disorder affecting 5–10 % of women of reproductive age. It generally manifests with oligo/anovulatory cycles, hirsutism and polycystic ovaries, together with a considerable prevalence of insulin resistance. Although the aetiology of the syndrome is not completely understood yet, PCOS is considered a multifactorial disorder with various genetic, endocrine and environmental abnormalities. Moreover, PCOS patients have a higher risk of metabolic and cardiovascular diseases and their related morbidity, if compared to the general population.

Journal ArticleDOI
TL;DR: Exposure to microplastics because of direct ingestion and consumption of contaminated prey poses a major threat to the health of fin whales in the Mediterranean Sea, according to this study.

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, M. R. Abernathy1  +985 moreInstitutions (106)
Abstract: A transient gravitational-wave signal, GW150914, was identified in the twin Advanced LIGO detectors on September 14, 2015 at 09:50:45 UTC. To assess the implications of this discovery, the detectors remained in operation with unchanged configurations over a period of 39 d around the time of the signal. At the detection statistic threshold corresponding to that observed for GW150914, our search of the 16 days of simultaneous two-detector observational data is estimated to have a false alarm rate (FAR) of < 4.9 × 10^(−6) yr^(−1), yielding a p-value for GW150914 of < 2 × 10^(−7). Parameter estimation followup on this trigger identifies its source as a binary black hole (BBH) merger with component masses (m_1, m_2) = (36^(+5)_(−4), 29^(+4)_(−4)) M_⊙ at redshift z = 0.09^(+0.03)_(−0.04) (median and 90\% credible range). Here we report on the constraints these observations place on the rate of BBH coalescences. Considering only GW150914, assuming that all BBHs in the Universe have the same masses and spins as this event, imposing a search FAR threshold of 1 per 100 years, and assuming that the BBH merger rate is constant in the comoving frame, we infer a 90% credible range of merger rates between 2--53 Gpc^(−3) yr^(−1) (comoving frame). Incorporating all search triggers that pass a much lower threshold while accounting for the uncertainty in the astrophysical origin of each trigger, we estimate a higher rate, ranging from 13--600 Gpc^(−3) yr^(−1) depending on assumptions about the BBH mass distribution. All together, our various rate estimates fall in the conservative range 2--600 Gpc^(−3) yr^(−1).

Journal ArticleDOI
TL;DR: In this article, a conceptual structure depicting the current situation of literature dealing with the analysis of economic impact and environmental/social impact of Product Service System is presented and a methodological structure concerning methodologies and research purpose behind papers.

Journal ArticleDOI
TL;DR: Demographic modeling not only indicates an LGM genetic bottleneck, but also provides surprising evidence of a major population turnover in Europe around 14,500 years ago during the Late Glacial, a period of climatic instability at the end of the Pleistocene.

Journal ArticleDOI
TL;DR: The general observed accumulation of PS NPs within the gut during the 48h of exposure indicates a continuous bioavailability of nano-sized PS for planktonic species as well as a potential transfer along the trophic web.

Journal ArticleDOI
TL;DR: Lowering the inflammatory burden through an increasingly tight control of disease activity may represent the most effective intervention to reduce arrhythmic risk in RA patients, and could help elucidate the link between low-grade chronic inflammation and arrhythmical risk in the general population.
Abstract: Rheumatoid arthritis (RA) is a chronic immuno-mediated disease primarily affecting the joints, characterized by persistent high-grade systemic inflammation. Cardiovascular morbidity and mortality are significantly increased in RA, with >50% of premature deaths attributable to cardiovascular disease. In particular, RA patients were twice as likely to experience sudden cardiac death compared with non-RA subjects, pointing to an increased propensity to develop malignant ventricular arrhythmias. Indeed, ventricular repolarization (QT interval) abnormalities and cardiovascular autonomic nervous system dysfunction, representing two well-recognized risk factors for life-threatening ventricular arrhythmias in the general population, are commonly observed in RA. Moreover, large population-based studies seem to indicate that also the prevalence of atrial fibrillation is significantly higher in RA subjects than in the general population, thus suggesting that these patients are characterized by an abnormal diffuse myocardial electrical instability. Although the underlying mechanisms accounting for the pro-arrhythmogenic substrate in RA are probably intricate, the leading role seems to be played by chronic systemic inflammatory activation, able to promote arrhythmias both indirectly, by accelerating the development of ischaemic heart disease and congestive heart failure, and directly, by affecting cardiac electrophysiology. In this integrated mechanistic view, lowering the inflammatory burden through an increasingly tight control of disease activity may represent the most effective intervention to reduce arrhythmic risk in these patients. Intriguingly, these considerations could be more generally applicable to all the diseases characterized by chronic systemic inflammation, and could help elucidate the link between low-grade chronic inflammation and arrhythmic risk in the general population.

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy3  +978 moreInstitutions (112)
TL;DR: In this paper, the authors reported that the non-detection of gravitational waves from the merger of binary-neutron star systems and neutron star-black hole systems during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO).
Abstract: We report here the non-detection of gravitational waves from the merger of binary–neutron star systems and neutron star–black hole systems during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). In particular, we searched for gravitational-wave signals from binary–neutron star systems with component masses $\in [1,3]\,{M}_{\odot }$ and component dimensionless spins <0.05. We also searched for neutron star–black hole systems with the same neutron star parameters, black hole mass $\in [2,99]\,{M}_{\odot }$, and no restriction on the black hole spin magnitude. We assess the sensitivity of the two LIGO detectors to these systems and find that they could have detected the merger of binary–neutron star systems with component mass distributions of 1.35 ± 0.13 M ⊙ at a volume-weighted average distance of ~70 Mpc, and for neutron star–black hole systems with neutron star masses of 1.4 M ⊙ and black hole masses of at least 5 M ⊙, a volume-weighted average distance of at least ~110 Mpc. From this we constrain with 90% confidence the merger rate to be less than 12,600 Gpc−3 yr−1 for binary–neutron star systems and less than 3600 Gpc−3 yr−1 for neutron star–black hole systems. We discuss the astrophysical implications of these results, which we find to be in conflict with only the most optimistic predictions. However, we find that if no detection of neutron star–binary mergers is made in the next two Advanced LIGO and Advanced Virgo observing runs we would place significant constraints on the merger rates. Finally, assuming a rate of ${10}_{-7}^{+20}$ Gpc−3 yr−1, short gamma-ray bursts beamed toward the Earth, and assuming that all short gamma-ray bursts have binary–neutron star (neutron star–black hole) progenitors, we can use our 90% confidence rate upper limits to constrain the beaming angle of the gamma-ray burst to be greater than $2\buildrel{\circ}\over{.} {3}_{-1.1}^{+1.7}$ ($4\buildrel{\circ}\over{.} {3}_{-1.9}^{+3.1}$).

Journal ArticleDOI
TL;DR: NEDA-4 has the potential to capture the impact of therapies on both inflammation and neurodegeneration, and deserves further evaluation across different compounds and in long-term studies.
Abstract: Background:‘No evidence of disease activity’ (NEDA), defined as absence of magnetic resonance imaging activity (T2 and/or gadolinium-enhanced T1 lesions), relapses and disability progression (‘NEDA...