scispace - formally typeset
Search or ask a question
Institution

University of Siena

EducationSiena, Italy
About: University of Siena is a education organization based out in Siena, Italy. It is known for research contribution in the topics: Population & Cancer. The organization has 12179 authors who have published 33334 publications receiving 1008287 citations. The organization is also known as: Università degli studi di Siena & Universita degli studi di Siena.


Papers
More filters
Journal ArticleDOI
TL;DR: As the protocol is rapid, universal, and compatible with silver staining, it could be used for routine protein extraction from recalcitrant plant tissues for proteomic analysis.
Abstract: A simple and universally applicable protocol for extracting high-quality proteins from recalcitrant plant tissues is described. We have used the protocol with no modification, for a wide range of leaves and fruits. In all cases, this protocol allows to obtain good electrophoretic separation of proteins. As the protocol is rapid, universal, and compatible with silver staining, it could be used for routine protein extraction from recalcitrant plant tissues for proteomic analysis.

501 citations

Journal ArticleDOI
Velio Bocci1
TL;DR: It is hoped that this report will open a dialogue among clinical scientists and will inform physicians about the beneficial effects of ozone therapy and clarify the biochemical and pharmacological mechanisms of action of ozone dissolved in biological fluids.

499 citations

Journal ArticleDOI
08 Dec 2006-Science
TL;DR: Empirical estimates show that genetic differences between early human groups are likely to have been great enough so that lethal intergroup competition could account for the evolution of altruism.
Abstract: Humans behave altruistically in natural settings and experiments. A possible explanation-that groups with more altruists survive when groups compete-has long been judged untenable on empirical grounds for most species. But there have been no empirical tests of this explanation for humans. My empirical estimates show that genetic differences between early human groups are likely to have been great enough so that lethal intergroup competition could account for the evolution of altruism. Crucial to this process were distinctive human practices such as sharing food beyond the immediate family, monogamy, and other forms of reproductive leveling. These culturally transmitted practices presuppose advanced cognitive and linguistic capacities, possibly accounting for the distinctive forms of altruism found in our species.

498 citations

Journal ArticleDOI
TL;DR: The extent of the changes suggests that neocortical GM pathology may occur early in the course of the disease in both RR and PP MS patients and contribute significantly to neurologic impairment.
Abstract: Objective: To assess cortical gray matter (GM) changes in MS and establish their relevance to clinical disability and to inflammatory changes of white matter (WM) in patients with the relapsing–remitting (RR) and primary progressive (PP) forms of the disease. Methods: Conventional MRI examinations were obtained in patients with definite MS who had either the RR or the PP form of the disease. An automated analysis tool was used with conventional T1-weighted MR images to obtain total and cortical brain volumes normalized for head size. Total brain lesion load was estimated on conventional proton density and T2-weighted MR images. The relationship between volumetric MR measures and scores of clinical disability was assessed. Results: Normalized cortical volumes (NCV) were lower for both RR and PP MS patients than for normal control subjects ( p p > 0.5). NCV decreases in both patients groups were detected even in those patients with short disease duration ( p p p p r = −0.47, p r = −0.25, p p r = −0.64, p r = −0.27, p = 0.04) MS patients. Conclusions: These data confirm substantial neocortical volume loss in MS patients and suggest that neocortical GM pathology may occur early in the course of the disease in both RR and PP MS patients and contribute significantly to neurologic impairment. Although a proportion of this neocortical pathology may be secondary to WM inflammation, the extent of the changes suggests that, especially in patients with PP MS, an independent neurodegenerative process also is active.

484 citations

Journal ArticleDOI
Vivianna M. Van Deerlin1, Patrick M. A. Sleiman1, Maria Martinez-Lage1, Maria Martinez-Lage2, Alice Chen-Plotkin1, Li-San Wang1, Neill R. Graff-Radford3, Dennis W. Dickson3, Rosa Rademakers3, Bradley F. Boeve3, Murray Grossman1, Steven E. Arnold1, David M. A. Mann4, Stuart Pickering-Brown4, Harro Seelaar5, Peter Heutink6, John C. van Swieten5, Jill R. Murrell7, Bernardino Ghetti7, Salvatore Spina8, Salvatore Spina7, Jordan Grafman9, John R. Hodges10, Maria Grazia Spillantini11, Sid Gilman12, Andrew P. Lieberman12, Jeffrey Kaye13, Randall L. Woltjer13, Eileen H. Bigio14, M.-Marsel Mesulam14, Safa Al-Sarraj15, Claire Troakes15, Roger N. Rosenberg16, Charles L. White17, Isidro Ferrer18, Albert Lladó18, Manuela Neumann19, Hans A. Kretzschmar20, Christine M. Hulette21, Kathleen A. Welsh-Bohmer21, Bruce L. Miller22, Ainhoa Alzualde, Adolfo López de Munain, Ann C. McKee23, Ann C. McKee24, Marla Gearing25, Allan I. Levey25, James J. Lah25, John Hardy26, Jonathan D. Rohrer26, Tammaryn Lashley26, Ian R. A. Mackenzie27, Howard Feldman27, Ronald L. Hamilton28, Steven T. DeKosky29, Julie van der Zee30, Julie van der Zee31, Samir Kumar-Singh30, Samir Kumar-Singh31, Christine Van Broeckhoven31, Christine Van Broeckhoven30, Richard Mayeux32, Jean Paul G. Vonsattel32, Juan C. Troncoso33, Jillian J. Kril34, John B.J. Kwok35, Glenda M. Halliday35, Thomas D. Bird36, Paul G. Ince37, Pamela J. Shaw37, Nigel J. Cairns38, John C. Morris38, Catriona McLean39, Charles DeCarli, William G. Ellis40, Stefanie H. Freeman41, Matthew P. Frosch41, John H. Growdon41, Daniel P. Perl, Mary Sano23, Mary Sano42, David A. Bennett43, Julie A. Schneider43, Thomas G. Beach, Eric M. Reiman44, Bryan K. Woodruff3, Jeffrey L. Cummings45, Harry V. Vinters45, Carol A. Miller46, Helena C. Chui46, Irina Alafuzoff47, Irina Alafuzoff48, Päivi Hartikainen48, Danielle Seilhean49, Douglas Galasko50, Eliezer Masliah50, Carl W. Cotman51, M. Teresa Tũón, M. Cristina Caballero Martínez, David G. Munoz52, Steven L. Carroll53, Daniel C. Marson53, Peter Riederer54, Nenad Bogdanovic55, Gerard D. Schellenberg1, Hakon Hakonarson1, John Q. Trojanowski1, Virginia M.-Y. Lee1 
University of Pennsylvania1, Autonomous University of Barcelona2, Mayo Clinic3, University of Manchester4, Erasmus University Rotterdam5, VU University Amsterdam6, Indiana University – Purdue University Indianapolis7, University of Siena8, National Institutes of Health9, Neuroscience Research Australia10, University of Cambridge11, University of Michigan12, Oregon Health & Science University13, Northwestern University14, King's College London15, University of Texas at Dallas16, University of Texas Southwestern Medical Center17, University of Barcelona18, University of Zurich19, Ludwig Maximilian University of Munich20, Duke University21, University of California, San Francisco22, Veterans Health Administration23, Boston University24, Emory University25, University College London26, University of British Columbia27, University of Pittsburgh28, University of Virginia29, Flanders Institute for Biotechnology30, University of Antwerp31, Columbia University32, Johns Hopkins University33, University of Sydney34, University of New South Wales35, University of Washington36, University of Sheffield37, Washington University in St. Louis38, Alfred Hospital39, University of California, Davis40, Harvard University41, Icahn School of Medicine at Mount Sinai42, Rush University Medical Center43, University of Arizona44, University of California, Los Angeles45, University of Southern California46, Uppsala University47, University of Eastern Finland48, Pierre-and-Marie-Curie University49, University of California, San Diego50, University of California, Irvine51, University of Toronto52, University of Alabama at Birmingham53, University of Würzburg54, Karolinska Institutet55
TL;DR: It is found that FTLD-TDP associates with multiple SNPs mapping to a single linkage disequilibrium block on 7p21 that contains TMEM 106B, which implicate variants in TMEM106B as a strong risk factor for FTLD, suggesting an underlying pathogenic mechanism.
Abstract: Frontotemporal lobar degeneration (FTLD) is the second most common cause of presenile dementia. The predominant neuropathology is FTLD with TAR DNA-binding protein (TDP-43) inclusions (FTLD-TDP). FTLD-TDP is frequently familial, resulting from mutations in GRN (which encodes progranulin). We assembled an international collaboration to identify susceptibility loci for FTLD-TDP through a genome-wide association study of 515 individuals with FTLD-TDP. We found that FTLD-TDP associates with multiple SNPs mapping to a single linkage disequilibrium block on 7p21 that contains TMEM106B. Three SNPs retained genome-wide significance following Bonferroni correction (top SNP rs1990622, P = 1.08 x 10(-11); odds ratio, minor allele (C) 0.61, 95% CI 0.53-0.71). The association replicated in 89 FTLD-TDP cases (rs1990622; P = 2 x 10(-4)). TMEM106B variants may confer risk of FTLD-TDP by increasing TMEM106B expression. TMEM106B variants also contribute to genetic risk for FTLD-TDP in individuals with mutations in GRN. Our data implicate variants in TMEM106B as a strong risk factor for FTLD-TDP, suggesting an underlying pathogenic mechanism.

479 citations


Authors

Showing all 12352 results

NameH-indexPapersCitations
Johan Auwerx15865395779
I. V. Gorelov1391916103133
Roberto Tenchini133139094541
Francesco Fabozzi133156193364
M. Davier1321449107642
Roberto Dell'Orso132141292792
Rino Rappuoli13281664660
Teimuraz Lomtadze12989380314
Manas Maity129130987465
Dezso Horvath128128388111
Paolo Azzurri126105881651
Vincenzo Di Marzo12665960240
Igor Katkov12597271845
Ying Lu12370862645
Thomas Schwarz12370154560
Network Information
Related Institutions (5)
University of Florence
79.5K papers, 2.3M citations

97% related

Sapienza University of Rome
155.4K papers, 4.3M citations

96% related

University of Padua
114.8K papers, 3.6M citations

95% related

University of Bologna
115.1K papers, 3.4M citations

95% related

University of Milan
139.7K papers, 4.6M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202391
2022221
20211,870
20201,979
20191,639
20181,523