scispace - formally typeset
Search or ask a question
Institution

University of South Australia

EducationAdelaide, South Australia, Australia
About: University of South Australia is a education organization based out in Adelaide, South Australia, Australia. It is known for research contribution in the topics: Population & Poison control. The organization has 10086 authors who have published 32587 publications receiving 913683 citations. The organization is also known as: The University of South Australia & UniSA.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a replication of a study of Hoyer and Brown that used a controlled experiment to examine the role of brand awareness in the consumer choice process was conducted, with a different (but similar) product category, a larger sample, and a sample group that included experienced as well as inexperienced consumers.

578 citations

Book ChapterDOI
TL;DR: In this paper, the authors highlight knowledge on the production of dissolved organic matter in soils under different management regimes, identify its sources and sinks, and integrate its dynamics with various soil processes.
Abstract: Dissolved organic matter (DOM) is defined as the organic matter fraction in solution that passes through a 0.45 μm filter. Although DOM is ubiquitous in terrestrial and aquatic ecosystems, it represents only a small proportion of the total organic matter in soil. However, DOM, being the most mobile and actively cycling organic matter fraction, influences a spectrum of biogeochemical processes in the aquatic and terrestrial environments. Biological fixation of atmospheric CO 2 during photosynthesis by higher plants is the primary driver of global carbon cycle. A major portion of the carbon in organic matter in the aquatic environment is derived from the transport of carbon produced in the terrestrial environment. However, much of the terrestrially produced DOM is consumed by microbes, photo degraded, or adsorbed in soils and sediments as it passes to the ocean. The majority of DOM in terrestrial and aquatic environments is ultimately returned to atmosphere as CO 2 through microbial respiration, thereby renewing the atmospheric CO 2 reserve for photosynthesis. Dissolved organic matter plays a significant role in influencing the dynamics and interactions of nutrients and contaminants in soils and microbial functions, thereby serving as a sensitive indicator of shifts in ecological processes. This chapter aims to highlight knowledge on the production of DOM in soils under different management regimes, identify its sources and sinks, and integrate its dynamics with various soil processes. Understanding the significance of DOM in soil processes can enhance development of strategies to mitigate DOM-induced environmental impacts. This review encourages greater interactions between terrestrial and aquatic biogeochemists and ecologists, which is essential for unraveling the fundamental biogeochemical processes involved in the synthesis of DOM in terrestrial ecosystem, its subsequent transport to aquatic ecosystem, and its role in environmental sustainability, buffering of nutrients and pollutants (metal(loid)s and organics), and the net effect on the global carbon cycle.

577 citations

Journal ArticleDOI
TL;DR: The COVID-19 pandemic of 2019-2020 has the potential to transform the tourism industry as well as the context in which it operates as mentioned in this paper, and this global crisis in which travel, tourism, hospitality and even...
Abstract: The COVID-19 pandemic of 2019–2020 has the potential to transform the tourism industry as well as the context in which it operates. This global crisis in which travel, tourism, hospitality and even...

573 citations

Journal ArticleDOI
TL;DR: The evidence points to CRPS being a multifactorial disorder that is associated with an aberrant host response to tissue injury, and variation in susceptibility to perturbed regulation of any of the underlying biological pathways probably accounts for the clinical heterogeneity of CRPS.
Abstract: A complex regional pain syndrome (CRPS)—multiple system dysfunction, severe and often chronic pain, and disability—can be triggered by a minor injury, a fact that has fascinated scientists and perplexed clinicians for decades. However, substantial advances across several medical disciplines have recently improved our understanding of CRPS. Compelling evidence implicates biological pathways that underlie aberrant infl ammation, vasomotor dysfunction, and maladaptive neuroplasticity in the clinical features of CRPS. Collectively, the evidence points to CRPS being a multifactorial disorder that is associated with an aberrant host response to tissue injury. Variation in susceptibility to perturbed regulation of any of the underlying biological pathways probably accounts for the clinical heterogeneity of CRPS.

573 citations

Journal ArticleDOI
Michael V. Holmes1, Michael V. Holmes2, Caroline Dale3, Luisa Zuccolo  +167 moreInstitutions (62)
10 Jul 2014-BMJ
TL;DR: In this article, the causal role of alcohol consumption in cardiovascular disease was investigated using a Mendelian randomisation meta-analysis of 56 epidemiological studies, including 20 259 coronary heart disease cases and 10 164 stroke events.
Abstract: OBJECTIVE: To use the rs1229984 variant in the alcohol dehydrogenase 1B gene (ADH1B) as an instrument to investigate the causal role of alcohol in cardiovascular disease. DESIGN: Mendelian randomisation meta-analysis of 56 epidemiological studies. PARTICIPANTS: 261 991 individuals of European descent, including 20 259 coronary heart disease cases and 10 164 stroke events. Data were available on ADH1B rs1229984 variant, alcohol phenotypes, and cardiovascular biomarkers. MAIN OUTCOME MEASURES: Odds ratio for coronary heart disease and stroke associated with the ADH1B variant in all individuals and by categories of alcohol consumption. RESULTS: Carriers of the A-allele of ADH1B rs1229984 consumed 17.2% fewer units of alcohol per week (95% confidence interval 15.6% to 18.9%), had a lower prevalence of binge drinking (odds ratio 0.78 (95% CI 0.73 to 0.84)), and had higher abstention (odds ratio 1.27 (1.21 to 1.34)) than non-carriers. Rs1229984 A-allele carriers had lower systolic blood pressure (-0.88 (-1.19 to -0.56) mm Hg), interleukin-6 levels (-5.2% (-7.8 to -2.4%)), waist circumference (-0.3 (-0.6 to -0.1) cm), and body mass index (-0.17 (-0.24 to -0.10) kg/m(2)). Rs1229984 A-allele carriers had lower odds of coronary heart disease (odds ratio 0.90 (0.84 to 0.96)). The protective association of the ADH1B rs1229984 A-allele variant remained the same across all categories of alcohol consumption (P=0.83 for heterogeneity). Although no association of rs1229984 was identified with the combined subtypes of stroke, carriers of the A-allele had lower odds of ischaemic stroke (odds ratio 0.83 (0.72 to 0.95)). CONCLUSIONS: Individuals with a genetic variant associated with non-drinking and lower alcohol consumption had a more favourable cardiovascular profile and a reduced risk of coronary heart disease than those without the genetic variant. This suggests that reduction of alcohol consumption, even for light to moderate drinkers, is beneficial for cardiovascular health.

571 citations


Authors

Showing all 10298 results

NameH-indexPapersCitations
Andrew P. McMahon16241590650
Timothy P. Hughes14583191357
Jeremy K. Nicholson14177380275
Peng Shi137137165195
Daniel Thomas13484684224
Jian Li133286387131
Matthew Jones125116196909
Ulrich S. Schubert122222985604
Elaine Holmes11956058975
Arne Astrup11486668877
Richard Gray10980878580
John B. Furness10359737668
Thomas J. Jentsch10123832810
Ben W.J. Mol101148547733
John C. Lindon9948844063
Network Information
Related Institutions (5)
Monash University
100.6K papers, 3M citations

97% related

University of Queensland
155.7K papers, 5.7M citations

96% related

University of Sydney
187.3K papers, 6.1M citations

94% related

University of New South Wales
153.6K papers, 4.8M citations

94% related

University of Melbourne
174.8K papers, 6.3M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202393
2022306
20212,326
20202,175
20192,151
20182,045