scispace - formally typeset
Search or ask a question
Institution

University of Southern Denmark

EducationOdense, Syddanmark, Denmark
About: University of Southern Denmark is a education organization based out in Odense, Syddanmark, Denmark. It is known for research contribution in the topics: Population & Randomized controlled trial. The organization has 11928 authors who have published 37918 publications receiving 1258559 citations. The organization is also known as: SDU.


Papers
More filters
Journal ArticleDOI
TL;DR: Factors controlling the anaerobic oxidation of ammonium with nitrate and nitrite were explored in a marine sediment from the Skagerrak in the Baltic-North Sea transition to show the biological nature of the process and indicate that the transformations might be attributed to the anammox process.
Abstract: Factors controlling the anaerobic oxidation of ammonium with nitrate and nitrite were explored in a marine sediment from the Skagerrak in the Baltic-North Sea transition. In anoxic incubations with the addition of nitrite, approximately 65% of the nitrogen gas formation was due to anaerobic ammonium oxidation with nitrite, with the remainder being produced by denitrification. Anaerobic ammonium oxidation with nitrite exhibited a biological temperature response, with a rate optimum at 15°C and a maximum temperature of 37°C. The biological nature of the process and a 1:1 stoichiometry for the reaction between nitrite and ammonium indicated that the transformations might be attributed to the anammox process. Attempts to find other anaerobic ammonium-oxidizing processes in this sediment failed. The apparent Km of nitrite consumption was less than 3 μM, and the relative importance of ammonium oxidation with nitrite and denitrification for the production of nitrogen gas was independent of nitrite concentration. Thus, the quantitative importance of ammonium oxidation with nitrite in the jar incubations at elevated nitrite concentrations probably represents the in situ situation. With the addition of nitrate, the production of nitrite from nitrate was four times faster than its consumption and therefore did not limit the rate of ammonium oxidation. Accordingly, the rate of this process was the same whether nitrate or nitrite was added as electron acceptor. The addition of organic matter did not stimulate denitrification, possibly because it was outcompeted by manganese reduction or because transport limitation was removed due to homogenization of the sediment.

335 citations

Journal ArticleDOI
TL;DR: Preliminary estimates of phytoremediation potential suggest that P. calomelanos might remove approximately 2% of the soil arsenic load per year, and the option of disposing high arsenic ferns at sea is raised for discussion.

334 citations

Journal ArticleDOI
TL;DR: Embryonic, foetal and adult stem cells in osteogenesis, specific features of bone cells needed to be advantageous for clinical use, and the development of therapeutic biological agents.
Abstract: This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed.

334 citations

Journal ArticleDOI
TL;DR: This study showed the ubiquitous presence of anammox bacteria in anoxic marine ecosystems, supporting previous observations on the importance ofanammox for N cycling in marine environments.
Abstract: Laboratory and field studies have indicated that anaerobic ammonium oxidation (anammox) is an important process in the marine nitrogen cycle. In this study 11 additional anoxic marine sediment and water column samples were studied to substantiate this claim. In a combined approach using the molecular methods, polymerase chain reaction (PCR), qualitative and quantitative fluorescence in situ hybridization (FISH), as well as (15)N stable isotope activity measurements, it was shown that anammox bacteria were present and active in all samples investigated. The anammox activity measured in the sediment samples ranged from 0.08 fmol cell(-1) day(-1) N(2) in the Golfo Dulce (Pacific Ocean, Costa Rica) sediment to 0.98 fmol cell(-1) day(-1) N(2) in the Gullmarsfjorden (North Sea, Sweden) sediment. The percentage of anammox cell of the total population (stained with DAPI) as assessed by quantitative FISH was highest in the Barents Sea (9% +/- 4%) and in most of the samples well over 2%. Fluorescence in situ hybridization and phylogenetic analysis of the PCR products derived from the marine samples indicated the exclusive presence of members of the Candidatus'Scalindua' genus. This study showed the ubiquitous presence of anammox bacteria in anoxic marine ecosystems, supporting previous observations on the importance of anammox for N cycling in marine environments.

334 citations

Journal ArticleDOI
TL;DR: Modification‐specific enrichment techniques combined with advanced MS/MS methods and computational data analysis have revealed a surprisingly large extent of PTMs in proteins, including multi‐site, cooperative modifications in individual proteins.
Abstract: More than 300 different types of protein post-translational modifications (PTMs) have been described, many of which are known to have pivotal roles in cellular physiology and disease. Nevertheless, only a handful of PTMs have been extensively investigated at the proteome level. Knowledge of protein substrates and their PTM sites is key to dissection of PTM-mediated cellular processes. The past several years have seen a tremendous progress in developing MS-based proteomics technologies for global PTM analysis, including numerous studies of yeast and other microbes. Modification-specific enrichment techniques combined with advanced MS/MS methods and computational data analysis have revealed a surprisingly large extent of PTMs in proteins, including multi-site, cooperative modifications in individual proteins. We review some of the current strategies employed for enrichment and detection of PTMs in modification-specific proteomics.

334 citations


Authors

Showing all 12150 results

NameH-indexPapersCitations
Paul M. Ridker2331242245097
George Davey Smith2242540248373
Matthias Mann221887230213
Eric Boerwinkle1831321170971
Gang Chen1673372149819
Jun Wang1661093141621
Harvey F. Lodish165782101124
Jens J. Holst1601536107858
Rajesh Kumar1494439140830
J. Fraser Stoddart147123996083
Debbie A Lawlor1471114101123
Børge G. Nordestgaard147104795530
Oluf Pedersen135939106974
Rasmus Nielsen13555684898
Torben Jørgensen13588386822
Network Information
Related Institutions (5)
University of Copenhagen
149.7K papers, 5.9M citations

96% related

Lund University
124.6K papers, 5M citations

96% related

Utrecht University
139.3K papers, 6.2M citations

93% related

University of British Columbia
209.6K papers, 9.2M citations

93% related

University of Amsterdam
140.8K papers, 5.9M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202382
2022410
20214,043
20203,614
20192,967
20182,603