scispace - formally typeset
Search or ask a question
Institution

University of Southern Denmark

EducationOdense, Syddanmark, Denmark
About: University of Southern Denmark is a education organization based out in Odense, Syddanmark, Denmark. It is known for research contribution in the topics: Population & Randomized controlled trial. The organization has 11928 authors who have published 37918 publications receiving 1258559 citations. The organization is also known as: SDU.


Papers
More filters
Journal ArticleDOI
TL;DR: This work combines protein identification and localization, using PCP‐SILAC mass spectrometry, BAC transgeneOmics, and antibodies to define the constituents of human centrosomes and identifies a novel set of five proteins preferentially associated with mother or daughter centrioles, comprising genes implicated in cell polarity.
Abstract: Centrosomes in animal cells are dynamic organelles with a proteinaceous matrix of pericentriolar material assembled around a pair of centrioles. They organize the microtubule cytoskeleton and the mitotic spindle apparatus. Mature centrioles are essential for biogenesis of primary cilia that mediate key signalling events. Despite recent advances, the molecular basis for the plethora of processes coordinated by centrosomes is not fully understood. We have combined protein identification and localization, using PCP-SILAC mass spectrometry, BAC transgeneOmics, and antibodies to define the constituents of human centrosomes. From a background of non-specific proteins, we distinguished 126 known and 40 candidate centrosomal proteins, of which 22 were confirmed as novel components. An antibody screen covering 4000 genes revealed an additional 113 candidates. We illustrate the power of our methods by identifying a novel set of five proteins preferentially associated with mother or daughter centrioles, comprising genes implicated in cell polarity. Pulsed labelling demonstrates a remarkable variation in the stability of centrosomal protein complexes. These spatiotemporal proteomics data provide leads to the further functional characterization of centrosomal proteins.

302 citations

Journal ArticleDOI
TL;DR: It is demonstrated for the first time that creatine supplementation in combination with strength training amplifies the training‐induced increase in satellite cell number and myonuclei concentration in human skeletal muscle fibres, thereby allowing an enhanced muscle fibre growth in response to strength training.
Abstract: The present study investigated the influence of creatine and protein supplementation on satellite cell frequency and number of myonuclei in human skeletal muscle during 16 weeks of heavy-resistance training. In a double-blinded design 32 healthy, male subjects (19-26 years) were assigned to strength training (STR) while receiving a timed intake of creatine (STR-CRE) (n=9), protein (STR-PRO) (n=8) or placebo (STR-CON) (n=8), or serving as a non-training control group (CON) (n=7). Supplementation was given daily (STR-CRE: 6-24 g creatine monohydrate, STR-PRO: 20 g protein, STR-CON: placebo). Furthermore, timed protein/placebo intake were administered at all training sessions. Muscle biopsies were obtained at week 0, 4, 8 (week 8 not CON) and 16 of resistance training (3 days per week). Satellite cells were identified by immunohistochemistry. Muscle mean fibre (MFA) area was determined after histochemical analysis. All training regimes were found to increase the proportion of satellite cells, but significantly greater enhancements were observed with creatine supplementation at week 4 (compared to STR-CON) and at week 8 (compared to STR-PRO and STR-CON) (P<0.01-0.05). At week 16, satellite cell number was no longer elevated in STR-CRE, while it remained elevated in STR-PRO and STR-CON. Furthermore, creatine supplementation resulted in an increased number of myonuclei per fibre and increases of 14-17% in MFA at week 4, 8 and 16 (P<0.01). In contrast, STR-PRO showed increase in MFA only in the later (16 week, +8%) and STR-CON only in the early (week 4, +14%) phases of training, respectively (P<0.05). In STR-CRE a positive relationship was found between the percentage increases in MFA and myonuclei from baseline to week 16, respectively (r=0.67, P<0.05). No changes were observed in the control group (CON). In conclusion, the present study demonstrates for the first time that creatine supplementation in combination with strength training amplifies the training-induced increase in satellite cell number and myonuclei concentration in human skeletal muscle fibres, thereby allowing an enhanced muscle fibre growth in response to strength training.

302 citations

Journal ArticleDOI
01 Sep 2012-Leukemia
TL;DR: An algorithm based on the expression of CD10, FOXP1 and BCL6 was developed that had a simpler structure than other recently proposed algorithms and 92.6% concordance with GEP and effectively predicts prognosis of DLBCL patients matching GEP subgroups in the era of rituximab therapy.
Abstract: Gene expression profiling (GEP) has stratified diffuse large B-cell lymphoma (DLBCL) into molecular subgroups that correspond to different stages of lymphocyte development-namely germinal center B-cell like and activated B-cell like. This classification has prognostic significance, but GEP is expensive and not readily applicable into daily practice, which has lead to immunohistochemical algorithms proposed as a surrogate for GEP analysis. We assembled tissue microarrays from 475 de novo DLBCL patients who were treated with rituximab-CHOP chemotherapy. All cases were successfully profiled by GEP on formalin-fixed, paraffin-embedded tissue samples. Sections were stained with antibodies reactive with CD10, GCET1, FOXP1, MUM1 and BCL6 and cases were classified following a rationale of sequential steps of differentiation of B cells. Cutoffs for each marker were obtained using receiver-operating characteristic curves, obviating the need for any arbitrary method. An algorithm based on the expression of CD10, FOXP1 and BCL6 was developed that had a simpler structure than other recently proposed algorithms and 92.6% concordance with GEP. In multivariate analysis, both the International Prognostic Index and our proposed algorithm were significant independent predictors of progression-free and overall survival. In conclusion, this algorithm effectively predicts prognosis of DLBCL patients matching GEP subgroups in the era of rituximab therapy.

301 citations

Journal ArticleDOI
13 Sep 2019-Science
TL;DR: The high biodiversity of certain mountains reflects the interplay of multiple evolutionary mechanisms: enhanced speciation rates with distinct opportunities for coexistence and persistence of lineages, shaped by long-term climatic changes interacting with topographically dynamic landscapes.
Abstract: Mountain regions are unusually biodiverse, with rich aggregations of small-ranged species that form centers of endemism. Mountains play an array of roles for Earth’s biodiversity and affect neighboring lowlands through biotic interchange, changes in regional climate, and nutrient runoff. The high biodiversity of certain mountains reflects the interplay of multiple evolutionary mechanisms: enhanced speciation rates with distinct opportunities for coexistence and persistence of lineages, shaped by long-term climatic changes interacting with topographically dynamic landscapes. High diversity in most tropical mountains is tightly linked to bedrock geology—notably, areas comprising mafic and ultramafic lithologies, rock types rich in magnesium and poor in phosphate that present special requirements for plant physiology. Mountain biodiversity bears the signature of deep-time evolutionary and ecological processes, a history well worth preserving.

301 citations

Journal ArticleDOI
TL;DR: A total of 7% of all deaths in the young can be attributed to SCD, when including non-autopsied cases (autopsy ratio 75%), which is higher than previously reported.
Abstract: Aims The aim of this investigation was to study the incidence of sudden cardiac death (SCD) in persons aged 1–35 years in a nationwide setting (5.38 million people) by systematic evaluation of all deaths. Methods and results All deaths in persons aged 1–35 years in Denmark in 2000–06 were included. Death certificates were read independently by two physicians. The National Patient Registry was used to retrieve information on prior medical history. All autopsy reports were read and the cause of death was revised based on autopsy findings. We identified 625 cases of sudden unexpected death (10% of all deaths), of which 156 (25%) were not autopsied. Of the 469 autopsied cases, 314 (67%) were SCD. The most common cardiac cause of death was ischaemic heart disease (13%); 29% of autopsied sudden unexpected death cases were unexplained. In 45% of SCD cases, the death was witnessed; 34% died during sleep; 89% were out-of-hospital deaths. Highest possible incidence rate of SCD in the young was 2.8 per 100 000 person-years including non-autopsied cases of sudden unexpected death. Excluding those, the incidence rate declined to 1.9 per 100 000 person-years. Conclusions A total of 7% of all deaths in the young can be attributed to SCD, when including non-autopsied cases (autopsy ratio 75%). The incidence rate of SCD in the young of 2.8 per 100 000 person-years is higher than previously reported.

301 citations


Authors

Showing all 12150 results

NameH-indexPapersCitations
Paul M. Ridker2331242245097
George Davey Smith2242540248373
Matthias Mann221887230213
Eric Boerwinkle1831321170971
Gang Chen1673372149819
Jun Wang1661093141621
Harvey F. Lodish165782101124
Jens J. Holst1601536107858
Rajesh Kumar1494439140830
J. Fraser Stoddart147123996083
Debbie A Lawlor1471114101123
Børge G. Nordestgaard147104795530
Oluf Pedersen135939106974
Rasmus Nielsen13555684898
Torben Jørgensen13588386822
Network Information
Related Institutions (5)
University of Copenhagen
149.7K papers, 5.9M citations

96% related

Lund University
124.6K papers, 5M citations

96% related

Utrecht University
139.3K papers, 6.2M citations

93% related

University of British Columbia
209.6K papers, 9.2M citations

93% related

University of Amsterdam
140.8K papers, 5.9M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202382
2022410
20214,042
20203,614
20192,967
20182,603