scispace - formally typeset
Search or ask a question

Showing papers by "University of St Andrews published in 2012"


Journal ArticleDOI
TL;DR: Metal Organic Frameworks in Biomedicine Patricia Horcajada, Ruxandra Gref, Tarek Baati, Phoebe K. Allan, Guillaume Maurin, Patrick Couvreur, G erard F erey, Russell E. Morris, and Christian Serre.
Abstract: Metal Organic Frameworks in Biomedicine Patricia Horcajada,* Ruxandra Gref, Tarek Baati, Phoebe K. Allan, Guillaume Maurin, Patrick Couvreur, G erard F erey, Russell E. Morris, and Christian Serre* Institut Lavoisier, UMR CNRS 8180, Universit e de Versailles St-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France Facult e de Pharmacie, UMR CNRS 8612, Universit e Paris-Sud, 92296 Châtenay-Malabry Cedex, France Institut Charles Gerhardt Montpellier, UMR CNRS 5253, Universit e Montpellier 2, 34095 Montpellier cedex 05, France EaStChem School of Chemistry, University of St. Andrews Purdie Building, St Andrews, KY16 9ST U.K.

3,400 citations


Journal ArticleDOI
TL;DR: The Review will consider some of the current scientific issues underpinning lithium batteries and electric double-layer capacitors.
Abstract: Energy-storage technologies, including electrical double-layer capacitors and rechargeable batteries, have attracted significant attention for applications in portable electronic devices, electric vehicles, bulk electricity storage at power stations, and “load leveling” of renewable sources, such as solar energy and wind power. Transforming lithium batteries and electric double-layer capacitors requires a step change in the science underpinning these devices, including the discovery of new materials, new electrochemistry, and an increased understanding of the processes on which the devices depend. The Review will consider some of the current scientific issues underpinning lithium batteries and electric double-layer capacitors.

2,412 citations


Journal ArticleDOI
03 Aug 2012-Science
TL;DR: Operation of the rechargeable Li-O2 battery depends critically on repeated and highly reversible formation/decomposition of lithium peroxide (Li2O2) at the cathode upon cycling, and it is shown that this process is possible with the use of a dimethyl sulfoxide electrolyte and a porous gold electrode.
Abstract: The rechargeable nonaqueous lithium-air (Li-O(2)) battery is receiving a great deal of interest because, theoretically, its specific energy far exceeds the best that can be achieved with lithium-ion cells. Operation of the rechargeable Li-O(2) battery depends critically on repeated and highly reversible formation/decomposition of lithium peroxide (Li(2)O(2)) at the cathode upon cycling. Here, we show that this process is possible with the use of a dimethyl sulfoxide electrolyte and a porous gold electrode (95% capacity retention from cycles 1 to 100), whereas previously only partial Li(2)O(2) formation/decomposition and limited cycling could occur. Furthermore, we present data indicating that the kinetics of Li(2)O(2) oxidation on charge is approximately 10 times faster than on carbon electrodes.

1,712 citations


Journal ArticleDOI
TL;DR: Improving adolescent health worldwide requires improving young people's daily life with families and peers and in schools, addressing risk and protective factors in the social environment at a population level, and focusing on factors that are protective across various health outcomes.

1,648 citations


Journal ArticleDOI
TL;DR: In this article, the authors proposed a model for the origin of the 2.55-2.50-Ga metamorphic pulse in the North China Craton (NCC), which is interpreted as a major phase of juvenile crustal growth in the craton.

1,181 citations


Journal ArticleDOI
TL;DR: The robust reaction conditions and irreversible linkage of SpyTag shed light on spontaneous isopeptide bond formation and should provide a targetable lock in cells and a stable module for new protein architectures.
Abstract: Protein interactions with peptides generally have low thermodynamic and mechanical stability. Streptococcus pyogenes fibronectin-binding protein FbaB contains a domain with a spontaneous isopeptide bond between Lys and Asp. By splitting this domain and rational engineering of the fragments, we obtained a peptide (SpyTag) which formed an amide bond to its protein partner (SpyCatcher) in minutes. Reaction occurred in high yield simply upon mixing and amidst diverse conditions of pH, temperature, and buffer. SpyTag could be fused at either terminus or internally and reacted specifically at the mammalian cell surface. Peptide binding was not reversed by boiling or competing peptide. Single-molecule dynamic force spectroscopy showed that SpyTag did not separate from SpyCatcher until the force exceeded 1 nN, where covalent bonds snap. The robust reaction conditions and irreversible linkage of SpyTag shed light on spontaneous isopeptide bond formation and should provide a targetable lock in cells and a stable module for new protein architectures.

1,086 citations


Journal ArticleDOI
01 Oct 2012-Geology
TL;DR: In this paper, the authors use the difference between the measured crystallization ages (CA) of individual zircon grains present in the sediment and the depositional age (DA) of the sedi-ment to constrain the tectonic setting in which the sediment was deposited.
Abstract: Detrital zircon spectra refl ect the tectonic setting of the basin in which they are deposited. Convergent plate margins are charac-terized by a large proportion of zircon ages close to the depositional age of the sediment, whereas sediments in collisional, extensional and intracratonic settings contain greater proportions with older ages that refl ect the history of the underlying basement. These differences can be resolved by plotting the distribution of the difference between the measured crystallization ages (CA) of individual zircon grains present in the sediment and the depositional age (DA) of the sedi-ment. Application of this approach to successions where the original nature of the basin and/or the link to source are no longer preserved constrains the tectonic setting in which the sediment was deposited.INTRODUCTION Detrital zircons are a minor constituent of clastic sedimentary rocks, yet their physiochemical resilience and high concentrations of certain key trace elements means that they have become an important phase in sedimentary provenance analysis and in crustal evolution studies (e.g., Cawood et al., 2007b; Hawkesworth et al., 2010). Large numbers of in situ, high precision analyses of both igneous and detrital zircons are now available, and a striking feature of the zircon record is that it clusters into peaks of crystallization ages (Condie et al., 2009). Compilations of crys-tallization ages for detrital and igneous zircons show remarkably similar patterns of peaks and troughs, although with some variation in the rela-tive amplitude of the peaks (Condie et al., 2009). This coincidence sug-gests that the sedimentary record is a valid representation of the magmatic record (Hawkesworth et al., 2010).We establish that detrital zircon spectra have distinctive age distribu-tion patterns that refl ect the tectonic setting of the basin in which they are deposited. These patterns are principally controlled by (i) the volumes of magma generated in each tectonic setting and their preservation poten-tial, (ii) the ease with which magmatic and detrital zircons of various ages and origins become incorporated into the sedimentary record, and (iii) the record of old zircons incorporated into the sediment. These in turn provide a framework that can be used to constrain the tectonic setting of sedimen-tary packages. This approach distinguishes between three tectonic settings (i.e., convergent, collisional, and extensional), and it is most sensitive when the depositional age of the sediment investigated is well constrained. Basin setting will evolve with tectonic regime; for example, arc-continent or continent-continent collision will result in the evolution of convergent and extensional basins into collisional foreland basins. Hence the three settings distinguished herein are end-members, and the zircon age patterns associ-ated with each show a spectrum of distributions that merge and overlap rather than defi ne discrete fi elds. Discriminant plots developed for igneous rock geochemistry (e.g., Pearce and Cann, 1973) or sediment framework modes (e.g., Dickinson and Suczek, 1979) often have diffuse boundaries or overlap between fi elds, but remain important approaches in understanding and constraining tectonic setting. Equally important, exceptions to simple end-member classifi cations can provide insight into subtleties of tectonic process, such as outlined below for Avalonia in eastern North America.

969 citations


Journal ArticleDOI
TL;DR: In this article, a model for assembly and stabilization of the various Archean blocks of the NCC in the Paleoproterozoic has been proposed, based on the analysis of available stratigraphic, structural, geochemical, metamorphic and geochronologic data.

755 citations


Journal ArticleDOI
TL;DR: In this paper, the crystal structures of albumins from cattle (BSA), horse (ESA) and rabbit (RSA) sera were analyzed in the context of their potential allergenicity and cross-reactivity.

740 citations


Journal ArticleDOI
TL;DR: The saturation order of piecewise constant approximation in Lp norm on convex partitions with N cells is N−2/(d+1), where d is the number of variables as discussed by the authors.

720 citations


Journal ArticleDOI
16 Mar 2012-Science
TL;DR: In this paper, the authors identify systematic variations in hafnium and oxygen isotopes in zircons of different ages that reveal the relative proportions of reworked crust and of new crust through time, and a marked decrease in the rate of crustal growth at ~3 billion years ago may be linked to the onset of subduction-driven plate tectonics.
Abstract: Models for the growth of continental crust rely on knowing the balance between the generation of new crust and the reworking of old crust throughout Earth’s history. The oxygen isotopic composition of zircons, for which uranium-lead and hafnium isotopic data provide age constraints, is a key archive of crustal reworking. We identified systematic variations in hafnium and oxygen isotopes in zircons of different ages that reveal the relative proportions of reworked crust and of new crust through time. Growth of continental crust appears to have been a continuous process, albeit at variable rates. A marked decrease in the rate of crustal growth at ~3 billion years ago may be linked to the onset of subduction-driven plate tectonics.

Journal ArticleDOI
TL;DR: Different methods for the preparation of ordered mesoporous metal oxides are described; their applications in energy conversion and storage, catalysis, sensing, adsorption and separation are reviewed; and the correlations between the textural properties and their specific performance are highlighted.
Abstract: Great progress has been made in the preparation and application of ordered mesoporous metal oxides during the past decade. However, the applications of these novel and interesting materials have not been reviewed comprehensively in the literature. In the current review we first describe different methods for the preparation of ordered mesoporous metal oxides; we then review their applications in energy conversion and storage, catalysis, sensing, adsorption and separation. The correlations between the textural properties of ordered mesoporous metal oxides and their specific performance are highlighted in different examples, including the rate of Li intercalation, sensing, and the magnetic properties. These results demonstrate that the mesoporosity has a direct impact on the properties and potential applications of such materials. Although the scope of the current review is limited to ordered mesoporous metal oxides, we believe that the information may be useful for those working in a number of fields.

Journal ArticleDOI
12 Jan 2012-Nature
TL;DR: It is concluded that stars are orbited by planets as a rule, rather than the exception, and that of stars host Jupiter-mass planets 0.5–10 au (Sun–Earth distance) from their stars.
Abstract: Most known extrasolar planets (exoplanets) have been discovered using the radial velocity or transit methods. Both are biased towards planets that are relatively close to their parent stars, and studies find that around 17–30% of solar-like stars host a planet. Gravitational microlensing on the other hand, probes planets that are further away from their stars. Recently, a population of planets that are unbound or very far from their stars was discovered by microlensing. These planets are at least as numerous as the stars in the Milky Way. Here we report a statistical analysis of microlensing data (gathered in 2002–07) that reveals the fraction of bound planets 0.5–10 au (Sun–Earth distance) from their stars. We find that 17^(+16)_(-9)% of stars host Jupiter-mass planets (0.3–10 M_J, where M_J = 318 M_⊕ plus and M_⊕ plus is Earth’s mass). Cool Neptunes (10–30 M_⊕ plus) and super-Earths (5–10 M_⊕ plus) are even more common: their respective abundances per star are 52^(+22)_(-29)% and 62^(+35)_(-73)% . We conclude that stars are orbited by planets as a rule, rather than the exception.

Journal ArticleDOI
TL;DR: A novel approach is presented by utilizing disordered light within a standard multimode optical fibre for lensless microscopy and optical mode conversion and showing how such control can realize a new form of mode converter and generate various types of advanced light fields such as propagation-invariant beams and optical vortices.
Abstract: technology. This has been necessitated by the need to access hostile or difficult environments in situ and in vivo. strategies to date have included the use of specialist fibres and miniaturized scanning systems accompanied by ingenious microfabricated lenses. Here we present a novel approach for this field by utilizing disordered light within a standard multimode optical fibre for lensless microscopy and optical mode conversion. We demonstrate the modalities of bright- and dark-field imaging and scanning fluorescence microscopy at acquisition rates that allow observation of dynamic processes such as Brownian motion of mesoscopic particles. Furthermore, we show how such control can realize a new form of mode converter and generate various types of advanced light fields such as propagation-invariant beams and optical vortices. These may be useful for future fibre-based implementations of super-resolution or light-sheet microscopy.

Journal ArticleDOI
TL;DR: It is proposed that molecular epidemiology performed for surveillance and outbreak investigation and genotypic antimicrobial susceptibility testing for microbes that are difficult to grow represent the most immediate areas for application of WGS.
Abstract: Whole genome sequencing (WGS) promises to be transformative for the practice of clinical microbiology, and the rapidly falling cost and turnaround time mean that this will become a viable technology in diagnostic and reference laboratories in the near future. The objective of this article is to consider at a very practical level where, in the context of a modern diagnostic microbiology laboratory, WGS might be cost-effective compared to current alternatives. We propose that molecular epidemiology performed for surveillance and outbreak investigation and genotypic antimicrobial susceptibility testing for microbes that are difficult to grow represent the most immediate areas for application of WGS, and discuss the technical and infrastructure requirements for this to be implemented.

Journal ArticleDOI
TL;DR: In this paper, the low-redshift field galaxy stellar mass function (GSMF) was determined from a sample of 5210 galaxies using a density-corrected maximum volume method.
Abstract: We determine the low-redshift field galaxy stellar mass function (GSMF) using an area of 143 deg 2 from the first three years of the Galaxy And Mass Assembly (GAMA) survey. The magnitude limits of this redshift survey are r < 19.4 mag over two-thirds and 19.8 mag over one-third of the area. The GSMF is determined from a sample of 5210 galaxies using a densitycorrected maximum volume method. This efficiently overcomes the issue of fluctuations in the number density versus redshift. With H0 = 70 km s −1 Mpc −1 , the GSMF is well described

Journal ArticleDOI
TL;DR: The human–chimpanzee split is dated to at least 7–8 million years and the population split between Neanderthals and modern humans to 400,000–800,000 y ago, which suggests that molecular divergence dates may not be in conflict with the attribution of 6- to 7-million-y-old fossils to the human lineage and 400,,000-Y-old bones to the Neanderthal lineage.
Abstract: Fossils and molecular data are two independent sources of information that should in principle provide consistent inferences of when evolutionary lineages diverged. Here we use an alternative approach to genetic inference of species split times in recent human and ape evolution that is independent of the fossil record. We first use genetic parentage information on a large number of wild chimpanzees and mountain gorillas to directly infer their average generation times. We then compare these generation time estimates with those of humans and apply recent estimates of the human mutation rate per generation to derive estimates of split times of great apes and humans that are independent of fossil calibration. We date the human–chimpanzee split to at least 7–8 million years and the population split between Neanderthals and modern humans to 400,000–800,000 y ago. This suggests that molecular divergence dates may not be in conflict with the attribution of 6- to 7-million-y-old fossils to the human lineage and 400,000-y-old fossils to the Neanderthal lineage.



Journal ArticleDOI
Jean Bousquet1, Holger J. Schünemann2, B. Samolinski3, Pascal Demoly  +233 moreInstitutions (127)
TL;DR: Ten years after the publication of the ARIA World Health Organization workshop report, it is important to make a summary of its achievements and identify the still unmet clinical, research, and implementation needs to strengthen the 2011 European Union Priority on allergy and asthma in children.
Abstract: Allergic rhinitis (AR) and asthma represent global health problems for all age groups. Asthma and rhinitis frequently coexist in the same subjects. Allergic Rhinitis and its Impact on Asthma (ARIA) was initiated during a World Health Organization workshop in 1999 (published in 2001). ARIA has reclassified AR as mild/moderate-severe and intermittent/persistent. This classification closely reflects patients' needs and underlines the close relationship between rhinitis and asthma. Patients, clinicians, and other health care professionals are confronted with various treatment choices for the management of AR. This contributes to considerable variation in clinical practice, and worldwide, patients, clinicians, and other health care professionals are faced with uncertainty about the relative merits and downsides of the various treatment options. In its 2010 Revision, ARIA developed clinical practice guidelines for the management of AR and asthma comorbidities based on the Grading of Recommendation, Assessment, Development and Evaluation (GRADE) system. ARIA is disseminated and implemented in more than 50 countries of the world. Ten years after the publication of the ARIA World Health Organization workshop report, it is important to make a summary of its achievements and identify the still unmet clinical, research, and implementation needs to strengthen the 2011 European Union Priority on allergy and asthma in children.

Journal ArticleDOI
06 Sep 2012-Nature
TL;DR: The crystal structure of the dimeric RING domain of rat RNF4 in complex with E2 (UbcH5A) linked by an isopeptide bond to ubiquitin is reported, primed for catalysis as it can deprotonate the incoming substrate lysine residue and stabilize the consequent tetrahedral transition-state intermediate.
Abstract: Ubiquitin modification is mediated by a large family of specificity determining ubiquitin E3 ligases. To facilitate ubiquitin transfer, RING E3 ligases bind both substrate and a ubiquitin E2 conjugating enzyme linked to ubiquitin via a thioester bond, but the mechanism of transfer has remained elusive. Here we report the crystal structure of the dimeric RING domain of rat RNF4 in complex with E2 (UbcH5A) linked by an isopeptide bond to ubiquitin. While the E2 contacts a single protomer of the RING, ubiquitin is folded back onto the E2 by contacts from both RING protomers. The carboxy-terminal tail of ubiquitin is locked into an active site groove on the E2 by an intricate network of interactions, resulting in changes at the E2 active site. This arrangement is primed for catalysis as it can deprotonate the incoming substrate lysine residue and stabilize the consequent tetrahedral transition-state intermediate.

Journal ArticleDOI
TL;DR: A comprehensive analysis of the nature and characteristics of situations is provided, the complexities of situation identification are discussed, and the techniques that are most popularly used in modelling and inferring situations from sensor data are reviewed.

Journal ArticleDOI
TL;DR: A series of steps are proposed that include better coordination and use of data collected across countries, greater harmonisation of school-based surveys, further development of strategies for socially marginalised youth, targeted research into the validity anduse of these health indicators, and advocating for adolescent-health information within new global health initiatives.

Journal ArticleDOI
TL;DR: Including Projector Augmented Wave Method: A Chemist’s Point of View is presented.
Abstract: Including Projector Augmented Wave Method: A Chemist’s Point of View Christian Bonhomme,*,† Christel Gervais,*,† Florence Babonneau,† Cristina Coelho,‡ Fred́eŕique Pourpoint,† Thierry Azaïs,† Sharon E. Ashbrook,* John M. Griffin, Jonathan R. Yates,* Francesco Mauri, and Chris J. Pickard †Laboratoire de Chimie de la Matier̀e Condenseé de Paris, Universite ́ Pierre et Marie Curie, Paris 06, CNRS UMR 7574, Colleg̀e de France, 75005 Paris, France ‡IMPC, Institut des Mateŕiaux de Paris Centre, FR2482, UPMC Universite ́ Pierre et Marie Curie Paris 06, Colleg̀e de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France School of Chemistry and EaStCHEM, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, United Kingdom Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom Laboratoire de Mineŕalogie Crystallographie, UMR CNRS 7590, Universite ́ Pierre et Marie Curie, UPMC, 75015 Paris, France Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom

Journal ArticleDOI
TL;DR: Four topics are focused on: the current controversy surrounding propagating intensity perturbations along coronal loops, the interpretation of propagating transverse loop oscillations, the ongoing search for coronal (torsional) Alfvén waves, and the rapidly developing topic of quasi-periodic pulsations in solar flares.
Abstract: Recent observations have revealed that magnetohydrodynamic (MHD) waves and oscillations are ubiquitous in the solar atmosphere, with a wide range of periods. We give a brief review of some aspects of MHD waves and coronal seismology that have recently been the focus of intense debate or are newly emerging. In particular, we focus on four topics: (i) the current controversy surrounding propagating intensity perturbations along coronal loops, (ii) the interpretation of propagating transverse loop oscillations, (iii) the ongoing search for coronal (torsional) Alfven waves, and (iv) the rapidly developing topic of quasi-periodic pulsations in solar flares.

Journal ArticleDOI
TL;DR: Here it is clearly demonstrated for the first time the use of a red metallic oxide, Sr(1-x)NbO(3) as an effective photocatalyst.
Abstract: Light absorption across the bandgap in semiconductors is exploited in many important applications such as photovoltaics, light-emitting diodes and photocatalytic conversion, but whether coloured metals can be used in such applications is unclear. A red metallic oxide Sr1-xNbO3 is now shown to be effective under visible light to photocatalyse the oxidation of methylene blue, and the oxidation and reduction of water.

Journal ArticleDOI
TL;DR: A distillation of questions about the mechanisms of speciation, the genetic basis of speciating and the relationship between speciation and diversity are presented.
Abstract: Speciation has been a major focus of evolutionary biology research in recent years, with many important advances. However, some of the traditional organising principles of the subject area no longer provide a satisfactory framework, such as the classification of speciation mechanisms by geographical context into allopatric, parapatric and sympatry classes. Therefore, we have asked where speciation research should be directed in the coming years. Here, we present a distillation of questions about the mechanisms of speciation, the genetic basis of speciation and the relationship between speciation and diversity. Our list of topics is not exhaustive; rather we aim to promote discussion on research priorities and on the common themes that underlie disparate speciation processes.

Journal ArticleDOI
02 Mar 2012-Science
TL;DR: The success of the children, but not of the chimpanzees or capuchins, in reaching higher-level solutions was strongly associated with a package of sociocognitive processes—including teaching through verbal instruction, imitation, and prosociality—that were observed only in the children and covaried with performance.
Abstract: The remarkable ecological and demographic success of humanity is largely attributed to our capacity for cumulative culture, with knowledge and technology accumulating over time, yet the social and cognitive capabilities that have enabled cumulative culture remain unclear. In a comparative study of sequential problem solving, we provided groups of capuchin monkeys, chimpanzees, and children with an experimental puzzlebox that could be solved in three stages to retrieve rewards of increasing desirability. The success of the children, but not of the chimpanzees or capuchins, in reaching higher-level solutions was strongly associated with a package of sociocognitive processes—including teaching through verbal instruction, imitation, and prosociality—that were observed only in the children and covaried with performance.

Journal ArticleDOI
01 Nov 2012-Ecology
TL;DR: A number of extensions of HMMs for animal movement modeling are described, including more flexible state transition models and individual random effects (fitted in a non-Bayesian framework).
Abstract: We discuss hidden Markov-type models for fitting a variety of multistate random walks to wildlife movement data. Discrete-time hidden Markov models (HMMs) achieve considerable computational gains by focusing on observations that are regularly spaced in time, and for which the measurement error is negligible. These conditions are often met, in particular for data related to terrestrial animals, so that a likelihood-based HMM approach is feasible. We describe a number of extensions of HMMs for animal movement modeling, including more flexible state transition models and individual random effects (fitted in a non-Bayesian framework). In particular we consider so-called hidden semi-Markov models, which may substantially improve the goodness of fit and provide important insights into the behavioral state switching dynamics. To showcase the expediency of these methods, we consider an application of a hierarchical hidden semi-Markov model to multiple bison movement paths.

Journal ArticleDOI
TL;DR: The stability of dimethylformamide toward reduced oxygen species is insufficient for its use in the rechargeable nonaqueous Li-O(2) battery.
Abstract: Stability of the electrolyte toward reduced oxygen species generated at the cathode is a crucial challenge for the rechargeable nonaqueous Li–O2 battery. Here, we investigate dimethylformamide as the basis of an electrolyte. Although reactions at the O2 cathode on the first discharge–charge cycle are dominated by reversible Li2O2 formation/decomposition, there is also electrolyte decomposition, which increases on cycling. The products of decomposition at the cathode on discharge are Li2O2, Li2CO3, HCO2Li, CH3CO2Li, NO, H2O, and CO2. Li2CO3 accumulates in the electrode with cycling. The stability of dimethylformamide toward reduced oxygen species is insufficient for its use in the rechargeable nonaqueous Li–O2 battery.