scispace - formally typeset
Search or ask a question
Institution

University of St Andrews

EducationSt Andrews, Fife, United Kingdom
About: University of St Andrews is a education organization based out in St Andrews, Fife, United Kingdom. It is known for research contribution in the topics: Population & Laser. The organization has 16260 authors who have published 43364 publications receiving 1636072 citations. The organization is also known as: St Andrews University & University of St. Andrews.
Topics: Population, Laser, Planet, Galaxy, Stars


Papers
More filters
Journal ArticleDOI
TL;DR: The adaptation of a wound healing assay to a 384 well format facilitates the study of aspects of cell migration, tissue reorganization, cell division, and other processes that underlie wound healing.
Abstract: Cell migration is a complex phenomenon that requires the coordination of numerous cellular processes. Investigation of cell migration and its underlying biology is of interest to basic scientists and those in search of therapeutics. Current migration assays for screening small molecules, siRNAs, or other perturbations are difficult to perform in parallel at the scale required to screen large libraries. We have adapted the commonly used scratch wound healing assay of tissue-culture cell monolayers to a 384 well plate format. By mechanically scratching the cell substrate with a pin array, we are able to create characteristically sized wounds in all wells of a 384 well plate. Imaging of the healing wounds with an automated fluorescence microscope allows us to distinguish perturbations that affect cell migration, morphology, and division. Readout requires ~1 hr per plate but is high in information content i.e. high content. We compare readouts using different imaging technologies, automated microscopy, scanners and a fluorescence macroscope, and evaluate the trade-off between information content and data acquisition rate. The adaptation of a wound healing assay to a 384 well format facilitates the study of aspects of cell migration, tissue reorganization, cell division, and other processes that underlie wound healing. This assay allows greater than 10,000 perturbations to be screened per day with a quantitative, high-content readout, and can also be used to characterize small numbers of perturbations in detail.

377 citations

Journal ArticleDOI
TL;DR: The activity of the NO storage materials is proved in myography experiments showing that the NO-releasing MOFs cause relaxation of porcine arterial tissue.
Abstract: Two porous metal organic frameworks (MOFs), [M2(C8H2O6)(H2O)2] x 8 H2O (M = Co, Ni), perform exceptionally well for the adsorption, storage, and water-triggered delivery of the biologically important gas nitric oxide. Adsorption and powder X-ray diffraction studies indicate that each coordinatively unsaturated metal atom in the structure coordinates to one NO molecule. All of the stored gas is available for delivery even after the material has been stored for several months. The combination of extremely high adsorption capacity (approximately 7 mmol of NO/g of MOF) and good storage stability is ideal for the preparation of NO storage solids. However, most important is that the entire reservoir of stored gas is recoverable on contact with a simple trigger (moisture). The activity of the NO storage materials is proved in myography experiments showing that the NO-releasing MOFs cause relaxation of porcine arterial tissue.

377 citations

Journal ArticleDOI
15 Jul 2011-PLOS ONE
TL;DR: In this article, a model of AMH concentration from conception to menopause has been presented, showing that 34% of the variation in AMH is due to age alone.
Abstract: Background: Anti-Mullerian hormone (AMH) is a product of growing ovarian follicles. The concentration of AMH in blood may also reflect the non-growing follicle (NGF) population, i.e. the ovarian reserve, and be of value in predicting reproductive lifespan. A full description of AMH production up to the menopause has not been previously reported. Methodology/Principal Findings: By searching the published literature for AMH concentrations in healthy pre-menopausal females, and using our own data (combined n~3,260) we have generated and robustly validated the first model of AMH concentration from conception to menopause. This model shows that 34% of the variation in AMH is due to age alone. We have shown that AMH peaks at age 24.5 years, followed by a decline to the menopause. We have also shown that there is a neonatal peak and a potential pre-pubertal peak. Our model allows us to generate normative data at all ages. Conclusions/Significance: These data highlight key inflection points in ovarian follicle dynamics. This first validated model of circulating AMH in healthy females describes a transition period in early adulthood, after which AMH reflects the progressive loss of the NGF pool. The existence of a neonatal increase in gonadal activity is confirmed for females. An improved understanding of the relationship between circulating AMH and age will lead to more accurate assessment of ovarian reserve for the individual woman.

377 citations

Journal ArticleDOI
TL;DR: It is found that keratinocytes and other human cells mount an innate immune response within hours of etoposide-induced DNA damage, which involves the DNA sensing adaptor STING but is independent of the cytosolic DNA receptor cGAS.

376 citations


Authors

Showing all 16531 results

NameH-indexPapersCitations
Yi Chen2174342293080
Paul M. Thompson1832271146736
Ian J. Deary1661795114161
Dongyuan Zhao160872106451
Mark J. Smyth15371388783
Harry Campbell150897115457
William J. Sutherland14896694423
Thomas J. Smith1401775113919
John A. Peacock140565125416
Jean-Marie Tarascon136853137673
David A. Jackson136109568352
Ian Ford13467885769
Timothy J. Mitchison13340466418
Will J. Percival12947387752
David P. Lane12956890787
Network Information
Related Institutions (5)
University of Oxford
258.1K papers, 12.9M citations

94% related

University of Cambridge
282.2K papers, 14.4M citations

94% related

University of Edinburgh
151.6K papers, 6.6M citations

93% related

University of Manchester
168K papers, 6.4M citations

93% related

University College London
210.6K papers, 9.8M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023127
2022387
20211,998
20201,996
20192,059
20181,946