scispace - formally typeset
Search or ask a question
Institution

University of St Andrews

EducationSt Andrews, Fife, United Kingdom
About: University of St Andrews is a education organization based out in St Andrews, Fife, United Kingdom. It is known for research contribution in the topics: Population & Laser. The organization has 16260 authors who have published 43364 publications receiving 1636072 citations. The organization is also known as: St Andrews University & University of St. Andrews.
Topics: Population, Laser, Planet, Galaxy, Stars


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a single-Sersic two-dimensional (2D) model fits to 167 600 galaxies modelled independently in the ugrizYJHK bandpasses using reprocessed Sloan Digital Sky Survey Data Release Seven (SDSS DR7) and UKIRT Infrared Deep Sky Survey Large Area Survey imaging data available from the Galaxy And Mass Assembly (GAMA) data base is presented.
Abstract: We present single-Sersic two-dimensional (2D) model fits to 167 600 galaxies modelled independently in the ugrizYJHK bandpasses using reprocessed Sloan Digital Sky Survey Data Release Seven (SDSS DR7) and UKIRT Infrared Deep Sky Survey Large Area Survey imaging data available from the Galaxy And Mass Assembly (GAMA) data base. In order to facilitate this study we developed Structural Investigation of Galaxies via Model Analysis (sigma), an r wrapper around several contemporary astronomy software packages including source extractor, psf extractor and galfit 3. sigma produces realistic 2D model fits to galaxies, employing automatic adaptive background subtraction and empirical point spread function measurements on the fly for each galaxy in GAMA. Using these results, we define a common coverage area across the three GAMA regions containing 138 269 galaxies. We provide Sersic magnitudes truncated at 10re which show good agreement with SDSS Petrosian and GAMA photometry for low Sersic index systems (n 4), recovering as much as Δm= 0.5 mag in the r band. We employ a K-band Sersic index/u−r colour relation to delineate the massive (n > ∼2) early-type galaxies (ETGs) from the late-type galaxies (LTGs). The mean Sersic index of these ETGs shows a smooth variation with wavelength, increasing by 30 per cent from g through K. LTGs exhibit a more extreme change in Sersic index, increasing by 52 per cent across the same range. In addition, ETGs and LTGs exhibit a 38 and 25 per cent decrease, respectively, in half-light radius from g through K. These trends are shown to arise due to the effects of dust attenuation and stellar population/metallicity gradients within galaxy populations.

289 citations

Journal ArticleDOI
TL;DR: A structure-based alignment of TNFR family members indicates that the extracellular domains are constructed primarily of two small polypeptide modules, which play distinctive structural roles in the architecture of the domains.

288 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explain the axisymmetric gaps seen in recent long-baseline observations of the HL Tau protoplanetary disc with the Atacama Large Millimetre/Submillimetre Array (ALMA) as being due to the different response of gas and dust to embedded planets in the disk.
Abstract: We explain the axisymmetric gaps seen in recent long-baseline observations of the HL Tau protoplanetary disc with the Atacama Large Millimetre/Submillimetre Array (ALMA) as being due to the different response of gas and dust to embedded planets in protoplanetary discs. We perform global, three dimensional dusty smoothed particle hydrodynamics calculations of multiple planets embedded in dust/gas discs which successfully reproduce most of the structures seen in the ALMA image. We find a best match to the observations using three embedded planets with masses of 0.2, 0.27 and 0.55 MJ in the three main gaps observed by ALMA, though there remain uncertainties in the exact planet masses from the disc model.

288 citations

Journal ArticleDOI
TL;DR: An investigation was made into the sensitivity of cells in the macaque superior temporal sulcus to the sight of different perspective views of the head, finding the majority to be viewer-centred and exhibited unimodal tuning to one view.
Abstract: An investigation was made into the sensitivity of cells in the macaque superior temporal sulcus (STS) to the sight of different perspective views of the head. This allowed assessment of (a) whether coding was ‘viewer-centred’ (view specific) or ‘object-centred’ (view invariant) and (b) whether viewer-centred cells were preferentially tuned to ‘characteristic’ views of the head. The majority of cells (110) were found to be viewer-centred and exhibited unimodal tuning to one view. 5 cells displayed object-centred coding responding equally to all views of the head. A further 5 cells showed ‘mixed’ properties, responding to all views of the head but also discriminating between views. 6 out of 56 viewer and object-centred cells exhibited selectivity for face identity or species. Tuning to view varied in sharpness. For most (54/73) cells the angle of perspective rotation reducing response to half maximal was 45–70° but for 19/73 it was >90°. More cells were optimally tuned to characteristic views of the head (the full face or profile) than to other views. Some cells were, however, found tuned to intermediate views throughout the full 360 degree range. This coding of many distinct head views may have a role in the analysis of social signals based on the interpretation of the direction of other individuals' attention.

288 citations

Journal ArticleDOI
TL;DR: In this article, the authors use a numerical simulation to follow the fragmentation of a turbulent molecular cloud and the subsequent formation and early evolution of a stellar cluster containing more than 400 stars.
Abstract: Recent surveys of star forming regions have shown that most stars, and probably all massive stars, are born in dense stellar clusters. The mechanism by which a molecular cloud fragments to form several hundred to thousands of individual stars has remained elusive. Here, we use a numerical simulation to follow the fragmentation of a turbulent molecular cloud and the subsequent formation and early evolution of a stellar cluster containing more than 400 stars. We show that the stellar cluster forms through the hierarchical fragmentation of a turbulent molecular cloud. This leads to the formation of many small subclusters which interact and merge to form the final stellar cluster. The hierarchical nature of the cluster formation has serious implications in terms of the properties of the new-born stars. The higher number-density of stars in subclusters, compared to a more uniform distribution arising from a monolithic formation, results in closer and more frequent dynamical interactions. Such close interactions can truncate circumstellar discs, harden existing binaries, and potentially liberate a population of planets. We estimate that at least one-third of all stars, and most massive stars, suffer such disruptive interactions.

288 citations


Authors

Showing all 16531 results

NameH-indexPapersCitations
Yi Chen2174342293080
Paul M. Thompson1832271146736
Ian J. Deary1661795114161
Dongyuan Zhao160872106451
Mark J. Smyth15371388783
Harry Campbell150897115457
William J. Sutherland14896694423
Thomas J. Smith1401775113919
John A. Peacock140565125416
Jean-Marie Tarascon136853137673
David A. Jackson136109568352
Ian Ford13467885769
Timothy J. Mitchison13340466418
Will J. Percival12947387752
David P. Lane12956890787
Network Information
Related Institutions (5)
University of Oxford
258.1K papers, 12.9M citations

94% related

University of Cambridge
282.2K papers, 14.4M citations

94% related

University of Edinburgh
151.6K papers, 6.6M citations

93% related

University of Manchester
168K papers, 6.4M citations

93% related

University College London
210.6K papers, 9.8M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023127
2022387
20211,998
20201,996
20192,059
20181,946