scispace - formally typeset
Search or ask a question
Institution

University of St Andrews

EducationSt Andrews, Fife, United Kingdom
About: University of St Andrews is a education organization based out in St Andrews, Fife, United Kingdom. It is known for research contribution in the topics: Population & Laser. The organization has 16260 authors who have published 43364 publications receiving 1636072 citations. The organization is also known as: St Andrews University & University of St. Andrews.
Topics: Population, Laser, Planet, Galaxy, Stars


Papers
More filters
Journal ArticleDOI
13 Jan 2006-Cell
TL;DR: The identification of a 24 member effector protein family found in pathogens including Salmonella, Shigella, and enteropathogenic E. coli, which subvert host cell function by mimicking the signaling properties of Ras-like GTPases.

276 citations

Journal ArticleDOI
TL;DR: Monitoring spatial and temporal patterns in cetacean abundance involves a variety of approaches depending upon the target species and the resources available, and increasingly, spatial modelling using GLMs and GAMs is being used to provide a better understanding of the biotic and hydrographic factors influencing cetACEan distribution.
Abstract: Monitoring spatial and temporal patterns in cetacean abundance involves a variety of approaches depending upon the target species and the resources available. As a first step, the collection of incidental sightings or strandings information aids the construction of a species list and a rough measure of status and seasonal variation in abundance. These often make use of networks of volunteer observers although the wide variation in abilities and experience means that special attention must be paid to training and to data quality control. More robust monitoring of numbers requires quantification of effort and some correction for factors that influence detectability, such as sea state. 2. The presence of cetaceans may be recorded visually, or indirectly by acoustics. Each has advan- tages and disadvantages, and their applicability may vary between species. The use of fixed sta- tions tends to allow sustained monitoring at relatively low cost but coverage is limited to the immediate vicinity. For more extensive coverage, mobile platforms are necessary. Platforms of opportunity such as ferries, whale-watching boats, etc. are often used to survey areas at low cost. These may allow repeat observations to be made over time, but with no control over where the ves- sel goes, it is typically not possible to sample wide areas, thus limiting abundance estimation. 3. Line transect surveys using dedicated platforms allow representative coverage of areas from which abundance estimates can be made (either using indices or absolute measures derived from density estimation). Assumptions relating to detectability and responsiveness need to be addressed and various methods (such as two-platform surveys) have been devel- oped to accommodate these. 4. For some cetacean species, mark-recapture methods can be applied using photo-identifica- tion of recognizable individuals. Again, a number of assumptions are made, particularly relat- ing to recognizability, representativeness of sampling and capture probabilities. Capturing, on film, as many animals in the population as possible helps to reduce the problem of heterogeneity of capture probabilities. Mark-recapture methods require at least two sampling occasions. If multiple sampling is employed, either open or closed population models can be used. 5. Measuring population change represents a particular challenge for mobile animals such as cetaceans. Changes in ranging patterns may have a large impact on abundance estimates unless very large areas are adequately covered. Power analysis is a useful method to indicate the ability of the data to detect a trend of a given magnitude. Increasingly, spatial modelling using GLMs and GAMs is being used to provide a better understanding of the biotic and hydrographic factors influencing cetacean distribution.

276 citations

Journal ArticleDOI
TL;DR: A group of eminent cetacean researchers respond to headlines charging that dolphins might be "flippin' idiots" by concluding that the large brain of cets evolved to support complex cognitive abilities.
Abstract: The brain of a sperm whale is about 60% larger in absolute mass than that of an elephant. Furthermore, the brains of toothed whales and dolphins are significantly larger than those of any nonhuman primates and are second only to human brains when measured with respect to body size [1]. How and why did such large brains evolve in these modern cetaceans? One current view of the evolution of dolphin brains is that their large size was primarily a response to social forces—the requirements for effective functioning within a complex society characterized by communication and collaboration as well as competition among group members [2–4]. In such a society, individuals can benefit from the recognition of others and knowledge of their relationships and from flexibility in adapting to or implementing new behaviors as social or ecological context shifts. Other views focus on the cognitive demands associated with the use of echolocation [5–7]. Recently, Manger [8] made the controversial claim that cetacean brains are large because they contain an unusually large number of thermogenic glial cells whose numbers increased greatly to counteract heat loss during a decrease in ocean temperatures in the Eocene-Oligocene transition. Therefore, he argues, cetacean brain size could have evolved independently of any cognitive demands and, further, that there is neither neuronal evidence nor behavioral evidence of complex cognition in cetaceans. These claims have garnered considerable attention in the popular press, because they challenge prevailing knowledge and understanding of cetacean brain evolution, cognition, and behavior. We believe that the time is ripe to present an integrated view of cetacean brains, behavior, and evolution based on the wealth of accumulated and recent data on these topics. Our conclusions support the more generally accepted view that the large brain of cetaceans evolved to support complex cognitive abilities.

276 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigate the impact of revenue diversification on financial performance for the period 1993-2004 and find that a positive direct exposure effect is outweighed by a negative indirect exposure effect for all but the largest credit unions.
Abstract: For US credit unions, revenue from non-interest sources has increased significantly in recent years. We investigate the impact of revenue diversification on financial performance for the period 1993–2004. The impact of a change in strategy that alters the share of non-interest income is decomposed into a direct exposure effect, reflecting the difference between interest and non-interest bearing activities, and an indirect exposure effect which reflects the effect of the institution’s own degree of diversification. On both risk-adjusted and unadjusted returns measures, a positive direct exposure effect is outweighed by a negative indirect exposure effect for all but the largest credit unions. This may imply that similar diversification strategies are not appropriate for large and small credit unions. Small credit unions should eschew diversification and continue to operate as simple savings and loan institutions, while large credit unions should be encouraged to exploit new product opportunities around their core expertise.

276 citations

Journal ArticleDOI
TL;DR: In this article, the brightness and magnetic surface images of the young K0 dwarfs AB Doradus and LQ Hydrae were reconstructed from Zeeman-Doppler imaging spectropolarimetric observations collected at the Anglo-Australian Telescope during five observing campaigns (totalling 50 nights), from 1998 January to 2002 January.
Abstract: In this paper, we present new brightness and magnetic surface images of the young K0 dwarfs AB Doradus and LQ Hydrae, and of the K1 subgiant of the RS CVn system HR 1099 (=V711 Tauri), reconstructed from Zeeman–Doppler imaging spectropolarimetric observations collected at the Anglo-Australian Telescope during five observing campaigns (totalling 50 nights), from 1998 January to 2002 January. Along with the older images of the same stars (published in previous papers), our complete data set represents the first long-term series on temporal fluctuations of magnetic topologies of very active stars. All of the magnetic images presented here indicate that large regions with predominantly azimuthal magnetic fields are continuously present at the surfaces of these stars. We take this as further evidence that the underlying dynamo processes that produce them are probably distributed throughout the entire convective zone (and not confined at its base, as in the Sun). We speculate that the radial and azimuthal field maps that we recover correspond, respectively, to the poloidal and toroidal components of the large-scale dynamo field. We find, in particular, that some signatures, for instance the relative fraction of magnetic energy stored in the large-scale poloidal and toroidal field components, and the polarity of the axisymmetric component of the field, are variable with time, and provide potentially fruitful diagnostics for investigating magnetic cycles in active stars other than the Sun. We report here the detection of partial polarity switches in some of the axisymmetric field components of two of our programme stars (AB Dor and LQ Hya), suggesting that the dynamo operating in these stars may be cyclic.

276 citations


Authors

Showing all 16531 results

NameH-indexPapersCitations
Yi Chen2174342293080
Paul M. Thompson1832271146736
Ian J. Deary1661795114161
Dongyuan Zhao160872106451
Mark J. Smyth15371388783
Harry Campbell150897115457
William J. Sutherland14896694423
Thomas J. Smith1401775113919
John A. Peacock140565125416
Jean-Marie Tarascon136853137673
David A. Jackson136109568352
Ian Ford13467885769
Timothy J. Mitchison13340466418
Will J. Percival12947387752
David P. Lane12956890787
Network Information
Related Institutions (5)
University of Oxford
258.1K papers, 12.9M citations

94% related

University of Cambridge
282.2K papers, 14.4M citations

94% related

University of Edinburgh
151.6K papers, 6.6M citations

93% related

University of Manchester
168K papers, 6.4M citations

93% related

University College London
210.6K papers, 9.8M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023127
2022387
20211,998
20201,996
20192,059
20181,946