scispace - formally typeset
Search or ask a question
Institution

University of St Andrews

EducationSt Andrews, Fife, United Kingdom
About: University of St Andrews is a education organization based out in St Andrews, Fife, United Kingdom. It is known for research contribution in the topics: Population & Laser. The organization has 16260 authors who have published 43364 publications receiving 1636072 citations. The organization is also known as: St Andrews University & University of St. Andrews.
Topics: Population, Laser, Stars, Catalysis, Galaxy


Papers
More filters
Journal ArticleDOI
TL;DR: The case for sexual selection is not as strongly supported as, for example, allopatric speciation, but probably contributes most effectively alongside ecological selection or selection...
Abstract: Sexual selection has a reputation as a major cause of speciation, one of the most potent forces driving reproductive isolation. This reputation arises from observations that species differ most in traits involved with mating success and from successful models of sexual selection–driven speciation. But how well proven is the case? Models confirm that the process can occur, but is strongest in conjunction with ecological or niche specialization. Some models also show that strong sexual selection can act against speciation. Studies using the comparative method are equivocal and often inconclusive, but some phylogeographic studies are more convincing. Experimental evolution and genetic or genomic analyses are in their infancy, but look particularly promising for resolving the importance of sexual selection. The case for sexual selection is not as strongly supported as, for example, allopatric speciation. Sexual selection probably contributes most effectively alongside ecological selection or selection...

609 citations

Journal ArticleDOI
23 Apr 1993-Cell
TL;DR: Findings indicate that at least two death pathways operate in neurons that are distinguished by their susceptibility to bcl-2, and that Neurons may die by either pathway, depending on the factors to which they have been exposed.

608 citations

Journal ArticleDOI
TL;DR: The extreme speed at which light moves, and the fact that photons do not tend to interact with transparent matter, is of enormous benefit to mankind as discussed by the authors, allowing us to see deep into the Universe and to transmit data over long distances in optical fibres.
Abstract: The extreme speed at which light moves, and the fact that photons do not tend to interact with transparent matter, is of enormous benefit to mankind. It allows us to see deep into the Universe and to transmit data over long distances in optical fibres. So, why slow light down?

605 citations

Journal ArticleDOI
TL;DR: In this article, the bias parameter of the 2dFGRS data set was used to measure the strength of clustering of the galaxies relative to the mass in the universe, and it was shown that on large scales, optically selected galaxies do indeed trace the underlying mass distribution.
Abstract: We compute the bispectrum of the 2dF Galaxy Redshift Survey (2dFGRS) and use it to measure the bias parameter of the galaxies. This parameter quantifies the strength of clustering of the galaxies relative to the mass in the Universe. By analysing 80 x 10 6 triangle configurations in the wavenumber range 0.1 < k < 0.5 h Mpc - 1 (i.e. on scales roughly between 5 and 30 h - 1 Mpc) we find that the linear bias parameter is consistent with unity: b 1 = 1.04 ′ 0.11, and the quadratic (non-linear) bias is consistent with zero: b 2 = -0.054 ′ 0.08. Thus, at least on large scales, optically selected galaxies do indeed trace the underlying mass distribution. The bias parameter can be combined with the 2dFGRS measurement of the redshift distortion parameter β ≃ Ω 0 . 6 m /b 1 , to yield Ωm = 0.27 ′0.06 for the matter density of the Universe, a result that is determined entirely from this survey, independent of other data sets. Our measurement of the matter density of the Universe should be interpreted as Ω m at the effective redshift of the survey (z = 0.17).

604 citations


Authors

Showing all 16531 results

NameH-indexPapersCitations
Yi Chen2174342293080
Paul M. Thompson1832271146736
Ian J. Deary1661795114161
Dongyuan Zhao160872106451
Mark J. Smyth15371388783
Harry Campbell150897115457
William J. Sutherland14896694423
Thomas J. Smith1401775113919
John A. Peacock140565125416
Jean-Marie Tarascon136853137673
David A. Jackson136109568352
Ian Ford13467885769
Timothy J. Mitchison13340466418
Will J. Percival12947387752
David P. Lane12956890787
Network Information
Related Institutions (5)
University of Oxford
258.1K papers, 12.9M citations

94% related

University of Cambridge
282.2K papers, 14.4M citations

94% related

University of Edinburgh
151.6K papers, 6.6M citations

93% related

University of Manchester
168K papers, 6.4M citations

93% related

University College London
210.6K papers, 9.8M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023127
2022388
20211,998
20201,996
20192,059
20181,946