scispace - formally typeset
Search or ask a question
Institution

University of St Andrews

EducationSt Andrews, Fife, United Kingdom
About: University of St Andrews is a education organization based out in St Andrews, Fife, United Kingdom. It is known for research contribution in the topics: Population & Laser. The organization has 16260 authors who have published 43364 publications receiving 1636072 citations. The organization is also known as: St Andrews University & University of St. Andrews.
Topics: Population, Laser, Planet, Galaxy, Stars


Papers
More filters
Journal ArticleDOI
TL;DR: A crude first estimate of marine mammal bycatch in the world's fisheries is derived by expanding U.S. bycatch with data on fleet composition from the Food and Agriculture Organization, likely to have significant demographic effects on many populations of marine mammals.
Abstract: Fisheries bycatch poses a significant threat to many populations of marine mammals, but there are few published estimates of the magnitude of these catches. We estimated marine mammal bycatch in U.S. fisheries from 1990 to 1999 with data taken from the stock assessment reports required by the U.S. Marine Mammal Protection Act. The mean annual bycatch of marine mammals during this period was 6215 ± 448 (SE). Bycatch of cetaceans and pinnipeds occurred in similar numbers. Most cetacean (84%) and pinniped (98%) bycatch occurred in gill-net fisheries. Marine mammal bycatch declined significantly over the decade, primarily because of a reduction in the bycatch of cetaceans. Total marine mammal bycatch was significantly lower after the implementation of take reduction measures in the latter half of the decade. We derived a crude first estimate of marine mammal bycatch in the world's fisheries by expanding U.S. bycatch with data on fleet composition from the Food and Agriculture Organization. The global bycatch of marine mammals is in the hundreds of thousands. Bycatch is likely to have significant demographic effects on many populations of marine mammals. Better data are urgently needed to fully understand the impact of these interactions.

604 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported the discovery and monitoring of the near-infrared counterpart (AT2017gfo) of a binary neutron-star merger event detected as a gravitational wave source by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo (GW170817) and as a short gamma-ray burst by Fermi Gamma-ray Burst Monitor (GBM) and Integral SPI-ACS (GRB 170817A).
Abstract: We report the discovery and monitoring of the near-infrared counterpart (AT2017gfo) of a binary neutron-star merger event detected as a gravitational wave source by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo (GW170817) and as a short gamma-ray burst by Fermi Gamma-ray Burst Monitor (GBM) and Integral SPI-ACS (GRB 170817A). The evolution of the transient light is consistent with predictions for the behavior of a "kilonova/macronova" powered by the radioactive decay of massive neutron-rich nuclides created via r-process nucleosynthesis in the neutron-star ejecta. In particular, evidence for this scenario is found from broad features seen in Hubble Space Telescope infrared spectroscopy, similar to those predicted for lanthanide-dominated ejecta, and the much slower evolution in the near-infrared ${K}_{{\rm{s}}}$-band compared to the optical. This indicates that the late-time light is dominated by high-opacity lanthanide-rich ejecta, suggesting nucleosynthesis to the third r-process peak (atomic masses $A\approx 195$). This discovery confirms that neutron-star mergers produce kilo-/macronovae and that they are at least a major—if not the dominant—site of rapid neutron capture nucleosynthesis in the universe.

600 citations

Journal ArticleDOI
TL;DR: A novel scoring function (RF-Score) that circumvents the need for problematic modelling assumptions via non-parametric machine learning is proposed and Random Forest was used to implicitly capture binding effects that are hard to model explicitly.
Abstract: Motivation: Accurately predicting the binding affinities of large sets of diverse protein–ligand complexes is an extremely challenging task. The scoring functions that attempt such computational prediction are essential for analysing the outputs of molecular docking, which in turn is an important technique for drug discovery, chemical biology and structural biology. Each scoring function assumes a predetermined theory-inspired functional form for the relationship between the variables that characterize the complex, which also include parameters fitted to experimental or simulation data and its predicted binding affinity. The inherent problem of this rigid approach is that it leads to poor predictivity for those complexes that do not conform to the modelling assumptions. Moreover, resampling strategies, such as cross-validation or bootstrapping, are still not systematically used to guard against the overfitting of calibration data in parameter estimation for scoring functions. Results: We propose a novel scoring function (RF-Score) that circumvents the need for problematic modelling assumptions via non-parametric machine learning. In particular, Random Forest was used to implicitly capture binding effects that are hard to model explicitly. RF-Score is compared with the state of the art on the demanding PDBbind benchmark. Results show that RF-Score is a very competitive scoring function. Importantly, RF-Score's performance was shown to improve dramatically with training set size and hence the future availability of more high-quality structural and interaction data is expected to lead to improved versions of RF-Score. Contact:pedro.ballester@ebi.ac.uk; jbom@st-andrews.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online.

598 citations

Journal ArticleDOI
TL;DR: Rats were trained to perform an attentional set-shifting task that is formally the same as that used in monkeys and humans and showed the same selective impairment in reversal learning in rats as seen in primates with orbital prefrontal cortex lesions.

597 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigate the physics of gas accretion in young stellar clusters and show that the relative velocities of the stars and the gas are comparable in the presence of the same potential.
Abstract: We investigate the physics of gas accretion in young stellar clusters. Accretion in clusters is a dynamic phenomenon as both the stars and the gas respond to the same gravitational potential. Accretion rates are highly non-uniform with stars nearer the centre of the cluster, where gas densities are higher, accreting more than others. This competitive accretion naturally results in both initial mass segregation and a spectrum of stellar masses. Accretion in gas-dominated clusters is well modelled using a tidal-lobe radius instead of the commonly used Bondi–Hoyle accretion radius. This works as both the stellar and gas velocities are under the influence of the same gravitational potential and are thus comparable. The low relative velocity which results means that Rtidal

595 citations


Authors

Showing all 16531 results

NameH-indexPapersCitations
Yi Chen2174342293080
Paul M. Thompson1832271146736
Ian J. Deary1661795114161
Dongyuan Zhao160872106451
Mark J. Smyth15371388783
Harry Campbell150897115457
William J. Sutherland14896694423
Thomas J. Smith1401775113919
John A. Peacock140565125416
Jean-Marie Tarascon136853137673
David A. Jackson136109568352
Ian Ford13467885769
Timothy J. Mitchison13340466418
Will J. Percival12947387752
David P. Lane12956890787
Network Information
Related Institutions (5)
University of Oxford
258.1K papers, 12.9M citations

94% related

University of Cambridge
282.2K papers, 14.4M citations

94% related

University of Edinburgh
151.6K papers, 6.6M citations

93% related

University of Manchester
168K papers, 6.4M citations

93% related

University College London
210.6K papers, 9.8M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023127
2022387
20211,998
20201,996
20192,059
20181,946