scispace - formally typeset
Search or ask a question
Institution

University of St Andrews

EducationSt Andrews, Fife, United Kingdom
About: University of St Andrews is a education organization based out in St Andrews, Fife, United Kingdom. It is known for research contribution in the topics: Population & Laser. The organization has 16260 authors who have published 43364 publications receiving 1636072 citations. The organization is also known as: St Andrews University & University of St. Andrews.
Topics: Population, Laser, Planet, Galaxy, Stars


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors explore and develop understandings of accountability specifically in the context of the NGO and then extend these insights to the accountability of all organisations and find that the essence of accountability lies in the relationships between the organisation and the society and/or stakeholder groups of interest.
Abstract: Purpose – The purpose of this research is to seek to understand and explain the non‐governmental organisation (NGO) and its location in civil society in order to provide a basis for future research work. The paper aims to explore and develop understandings of accountability specifically in the context of the NGO and then extend these insights to the accountability of all organisations.Design/methodology/approach – The paper is framed within a theoretical conception of accountability and is primarily literature‐based. In addition secondary data relating to the issues of concern are collated and synthesised.Findings – The research finds that the essence of accountability lies in the relationships between the organisation and the society and/or stakeholder groups of interest. The nature of this relationship allows us to infer much about the necessary formality and the channels of accountability. In turn, this casts a light upon taken‐for‐granted assumptions in the corporate accountability and reminds us that...

405 citations

Journal ArticleDOI
Claudio L. Afonso1, Gaya K. Amarasinghe2, Krisztián Bányai3, Yīmíng Bào4, Christopher F. Basler5, Sina Bavari6, Nicolás Bejerman, Kim R. Blasdell7, François Xavier Briand, Thomas Briese8, Alexander Bukreyev9, Charles H. Calisher10, Kartik Chandran11, Jiāsēn Chéng12, Anna N. Clawson4, Peter L. Collins4, Ralf G. Dietzgen13, Olga Dolnik14, Leslie L. Domier15, Ralf Dürrwald, John M. Dye6, Andrew J. Easton16, Hideki Ebihara4, Szilvia L. Farkas3, Juliana Freitas-Astúa17, Pierre Formenty18, Ron A. M. Fouchier19, Yanping Fu12, Elodie Ghedin20, Michael M. Goodin21, Roger Hewson22, Masayuki Horie23, Timothy H. Hyndman24, Dàohóng Jiāng12, E. W. Kitajima25, Gary P. Kobinger26, Hideki Kondo27, Gael Kurath28, Robert A. Lamb29, Sergio Lenardon, Eric M. Leroy, C. Li, Xian Dan Lin30, Lìjiāng Liú12, Ben Longdon31, Szilvia Marton3, Andrea Maisner14, Elke Mühlberger32, Sergey V. Netesov33, Norbert Nowotny34, Norbert Nowotny35, Jean L. Patterson36, Susan Payne37, Janusz T. Paweska, Richard E. Randall38, Bertus K. Rima39, Paul A. Rota30, Dennis Rubbenstroth40, Martin Schwemmle40, Mang Shi41, Sophie J. Smither42, Mark D. Stenglein10, David M. Stone, Ayato Takada43, Calogero Terregino, Robert B. Tesh9, Jun Hua Tian30, Keizo Tomonaga44, Noël Tordo45, Jonathan S. Towner30, Nikos Vasilakis9, Martin Verbeek46, Viktor E. Volchkov47, Victoria Wahl-Jensen, John A. Walsh16, Peter J. Walker7, David Wang2, Lin-Fa Wang48, Thierry Wetzel, Anna E. Whitfield49, Jiǎtāo Xiè12, Kwok-Yung Yuen50, Yong-Zhen Zhang41, Jens H. Kuhn4 
United States Department of Agriculture1, Washington University in St. Louis2, Hungarian Academy of Sciences3, National Institutes of Health4, Georgia State University5, United States Army Medical Research Institute of Infectious Diseases6, Commonwealth Scientific and Industrial Research Organisation7, Columbia University8, University of Texas Medical Branch9, Colorado State University10, Yeshiva University11, Huazhong Agricultural University12, University of Queensland13, University of Marburg14, University of Illinois at Urbana–Champaign15, University of Warwick16, Empresa Brasileira de Pesquisa Agropecuária17, World Health Organization18, Erasmus University Rotterdam19, New York University20, University of Kentucky21, Public Health England22, Kagoshima University23, Murdoch University24, University of São Paulo25, Public Health Agency of Canada26, Okayama University27, United States Geological Survey28, Northwestern University29, Centers for Disease Control and Prevention30, University of Cambridge31, Boston University32, Novosibirsk State University33, University of Medicine and Health Sciences34, University of Veterinary Medicine Vienna35, Texas Biomedical Research Institute36, Texas A&M University37, University of St Andrews38, Queen's University Belfast39, University of Freiburg40, Chinese Center for Disease Control and Prevention41, Defence Science and Technology Laboratory42, Hokkaido University43, Kyoto University44, Pasteur Institute45, Wageningen University and Research Centre46, University of Lyon47, National University of Singapore48, Kansas State University49, University of Hong Kong50
TL;DR: The updated taxonomy of the order Mononegavirales is presented as now accepted by the International Committee on Taxonomy of Viruses (ICTV).
Abstract: In 2016, the order Mononegavirales was emended through the addition of two new families (Mymonaviridae and Sunviridae), the elevation of the paramyxoviral subfamily Pneumovirinae to family status (Pneumoviridae), the addition of five free-floating genera (Anphevirus, Arlivirus, Chengtivirus, Crustavirus, and Wastrivirus), and several other changes at the genus and species levels. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).

404 citations

Journal ArticleDOI
TL;DR: A computer-generated hologram is used to form an optical beam with a localized intensity null at its focus that will have applications in the optical trapping of macroscopic objects or atoms; hence the term optical bottle beam.
Abstract: A computer-generated hologram is used to form an optical beam with a localized intensity null at its focus. The beam is a superposition of two Laguerre-Gaussian modes that are phased so that they interfere destructively to give a beam focus that is surrounded in all directions by regions of higher intensity. Beams of this kind will have applications in the optical trapping of macroscopic objects or atoms; hence the term optical bottle beam.

404 citations

Book
03 Feb 2003
TL;DR: The Physics of Plasmas as discussed by the authors provides a comprehensive introduction to the subject, illustrating the basic theory with examples drawn from fusion, space and astrophysical plasmas, and a particular strength of the book is its discussion of various models used to describe plasma physics and the relationships between them.
Abstract: The Physics of Plasmas provides a comprehensive introduction to the subject, illustrating the basic theory with examples drawn from fusion, space and astrophysical plasmas. A particular strength of the book is its discussion of the various models used to describe plasma physics and the relationships between them. These include particle orbit theory, fluid equations, ideal and resistive magnetohydrodynamics, wave equations and kinetic theory. The reader will gain a firm grounding in the fundamentals, and develop this into an understanding of some of the more specialised topics. Throughout the text, there is an emphasis on the physical interpretation of plasma phenomena. Exercises are provided throughout. Advanced undergraduate and graduate students of physics, applied mathematics, astronomy and engineering will find a clear but rigorous explanation of the fundamental properties of plasmas with minimal mathematical formality. This book will also appeal to research physicists, nuclear and electrical engineers.

402 citations

Journal ArticleDOI
TL;DR: The pros and cons of the two most commonly used methods for measuring FMR are discussed, gaining in popularity owing to its high accuracy and versatility, though the logistic constraint of performing calibrations can make its use a relatively extended process.
Abstract: Summary 1Measuring the metabolic rate of animals in the field (FMR) is central to the work of ecologists in many disciplines. In this article we discuss the pros and cons of the two most commonly used methods for measuring FMR. 2Both methods are constantly under development, but at the present time can only accurately be used to estimate the mean rate of energy expenditure of groups of animals. The doubly labelled water method (DLW) uses stable isotopes of hydrogen and oxygen to trace the flow of water and carbon dioxide through the body over time. From these data, it is possible to derive a single estimate of the rate of oxygen consumption () for the duration of the experiment. The duration of the experiment will depend on the rate of flow of isotopes of oxygen and hydrogen through the body, which in turn depends on the animal's size, ranging from 24 h for small vertebrates to up to 28 days in Humans. 3This technique has been used widely, partly as a result of its relative simplicity and potential low cost, though there is some uncertainty over the determination of the standard error of the estimate of mean . 4The heart rate (fH) method depends on the physiological relationship between heart rate and . 5If these two quantities are calibrated against each other under controlled conditions, fH can then be measured in free-ranging animals and used to estimate . 6The latest generation of small implantable data loggers means that it is possible to measure fH for over a year on a very fine temporal scale, though the current size of the data loggers limits the size of experimental animals to around 1 kg. However, externally mounted radio-transmitters are now sufficiently small to be used with animals of less than 40 g body mass. This technique is gaining in popularity owing to its high accuracy and versatility, though the logistic constraint of performing calibrations can make its use a relatively extended process.

401 citations


Authors

Showing all 16531 results

NameH-indexPapersCitations
Yi Chen2174342293080
Paul M. Thompson1832271146736
Ian J. Deary1661795114161
Dongyuan Zhao160872106451
Mark J. Smyth15371388783
Harry Campbell150897115457
William J. Sutherland14896694423
Thomas J. Smith1401775113919
John A. Peacock140565125416
Jean-Marie Tarascon136853137673
David A. Jackson136109568352
Ian Ford13467885769
Timothy J. Mitchison13340466418
Will J. Percival12947387752
David P. Lane12956890787
Network Information
Related Institutions (5)
University of Oxford
258.1K papers, 12.9M citations

94% related

University of Cambridge
282.2K papers, 14.4M citations

94% related

University of Edinburgh
151.6K papers, 6.6M citations

93% related

University of Manchester
168K papers, 6.4M citations

93% related

University College London
210.6K papers, 9.8M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023127
2022387
20211,998
20201,996
20192,059
20181,946