scispace - formally typeset
Search or ask a question
Institution

University of Stuttgart

EducationStuttgart, Germany
About: University of Stuttgart is a education organization based out in Stuttgart, Germany. It is known for research contribution in the topics: Laser & Finite element method. The organization has 27715 authors who have published 56370 publications receiving 1363382 citations. The organization is also known as: Universität Stuttgart.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that the structure of the delayed dynamics allows functionality to be retained for arbitrary communication delays, even for switching topologies under certain connectivity conditions.
Abstract: The coordinated motion of multi-agent systems and oscillator synchronization are two important examples of networked control systems. In this technical note, we consider what effect multiple, non-commensurate (heterogeneous) communication delays can have on the consensus properties of large-scale multi-agent systems endowed with nonlinear dynamics. We show that the structure of the delayed dynamics allows functionality to be retained for arbitrary communication delays, even for switching topologies under certain connectivity conditions. The results are extended to the related problem of oscillator synchronization.

206 citations

Journal ArticleDOI
TL;DR: The available experimental observations of microscopic, i.e. molecularly thin, films in various liquid-on-solid and solid- on-solid systems, as well as the corresponding theoretical models and studies aimed at understanding their formation and spreading dynamics are reviewed.
Abstract: The spontaneous spreading of non-volatile liquid droplets on solid substrates poses a classic problem in the context of wetting phenomena. It is well known that the spreading of a macroscopic droplet is in many cases accompanied by a thin film of macroscopic lateral extent, the so-called precursor film, which emanates from the three-phase contact line region and spreads ahead of the latter with a much higher speed. Such films have been usually associated with liquid-on-solid systems, but in the last decade similar films have been reported to occur in solid-on-solid systems. While the situations in which the thickness of such films is of mesoscopic size are fairly well understood, an intriguing and yet to be fully understood aspect is the spreading of microscopic, i.e. molecularly thin, films. Here we review the available experimental observations of such films in various liquid-on-solid and solid-on-solid systems, as well as the corresponding theoretical models and studies aimed at understanding their formation and spreading dynamics. Recent developments and perspectives for future research are discussed.

206 citations

Journal ArticleDOI
TL;DR: Evidence is provided that effort-based decision making is governed by an interconnected neural system that requires serial information transfer between ACC and NAc core.
Abstract: The anterior cingulate cortex (ACC), the basolateral amygdala (BLA), and the dopamine in the nucleus accumbens (NAc) are part of a neural system that is critically involved in making decisions on how much effort to invest for rewards. In the present study, we sought to identify functional interactions between ACC and NAc regulating effort-based decision making. Rats were tested in a T-maze cost-benefit task in which they could either choose to climb a barrier to obtain a large reward (LR) in one arm or a small reward in the other arm without a barrier. Experiment 1 revealed that bilateral excitotoxic lesions of the core subregion of the NAc impaired effort-based decision making, that is, reduced the preference for the high effort-LR option when having the choice to obtain a low reward with little effort. Experiment 2 showed that disconnection of the ACC and NAc core using an asymmetrical excitotoxic lesion procedure impaired effort-based decision making. The present data provide evidence that effort-based decision making is governed by an interconnected neural system that requires serial information transfer between ACC and NAc core.

206 citations

Journal ArticleDOI
TL;DR: In this paper, two procedures are discussed for the direct variational optimization of localized molecular orbitals which are expanded in local subsets of the molecular basis set, and it is shown that a Newton-Raphson approach is more efficient than an iterative diagonalization scheme.
Abstract: Two procedures are discussed for the direct variational optimization of localized molecular orbitals which are expanded in local subsets of the molecular basis set. It is shown that a Newton-Raphson approach is more efficient than an iterative diagonalization scheme. The effect of the basis-set truncation on the quality ofab-initio SCF results is investigated for Be, Li2, HF, H2O, NH3, CH4 and C2H6.

206 citations

Journal ArticleDOI
TL;DR: In this article, the effects of potential mitigation measures were modeled to obtain estimates of net greenhouse gas (GHG) emissions from representative dairy model farms in five European regions and the potential to reduce farm GHG emissions was calculated per kg milk to compare organic and conventional production systems and investigate region and system specific differences.

206 citations


Authors

Showing all 28043 results

NameH-indexPapersCitations
Yi Chen2174342293080
Robert J. Lefkowitz214860147995
Michael Kramer1671713127224
Andrew G. Clark140823123333
Stephen D. Walter11251357012
Fedor Jelezko10341342616
Ulrich Gösele10260346223
Dirk Helbing10164256810
Ioan Pop101137047540
Niyazi Serdar Sariciftci9959154055
Matthias Komm9983243275
Hans-Joachim Werner9831748508
Richard R. Ernst9635253100
Xiaoming Sun9638247153
Feng Chen95213853881
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

95% related

RWTH Aachen University
96.2K papers, 2.5M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

University of Erlangen-Nuremberg
85.6K papers, 2.6M citations

93% related

Technische Universität München
123.4K papers, 4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023147
2022482
20212,588
20202,646
20192,654
20182,525