scispace - formally typeset
Search or ask a question
Institution

University of Stuttgart

EducationStuttgart, Germany
About: University of Stuttgart is a education organization based out in Stuttgart, Germany. It is known for research contribution in the topics: Laser & Finite element method. The organization has 27715 authors who have published 56370 publications receiving 1363382 citations. The organization is also known as: Universität Stuttgart.


Papers
More filters
Journal ArticleDOI
TL;DR: It is proposed to synthesize the breadth of the articles in this special issue by suggesting some changes to the risk governance framework proposed by the International Risk Governance Council (IRGC) and adding some insights to its analytical and normative implications.
Abstract: The term governance describes the multitude of actors and processes that lead to collectively binding decisions. The term risk governance translates the core principles of governance to the context of risk-related policy making. We aim to delineate some basic lessons from the insights of the other articles in this special issue for our understanding of risk governance. Risk governance provides a conceptual as well as normative basis for how to cope with uncertain, complex and/or ambiguous risks. We propose to synthesize the breadth of the articles in this special issue by suggesting some changes to the risk governance framework proposed by the International Risk Governance Council (IRGC) and adding some insights to its analytical and normative implications.

407 citations

Journal ArticleDOI
TL;DR: Molpro as mentioned in this paper is a general purpose quantum chemistry software package with a long development history, originally focused on accurate wavefunction calculations for small molecules but now has many additional distinctive capabilities that include, inter alia, local correlation approximations combined with explicit correlation, highly efficient implementations of single-reference correlation methods, robust and efficient multireference methods for large molecules, projection embedding, and anharmonic vibrational spectra.
Abstract: Molpro is a general purpose quantum chemistry software package with a long development history. It was originally focused on accurate wavefunction calculations for small molecules but now has many additional distinctive capabilities that include, inter alia, local correlation approximations combined with explicit correlation, highly efficient implementations of single-reference correlation methods, robust and efficient multireference methods for large molecules, projection embedding, and anharmonic vibrational spectra. In addition to conventional input-file specification of calculations, Molpro calculations can now be specified and analyzed via a new graphical user interface and through a Python framework.

405 citations

Journal ArticleDOI
TL;DR: In this article, an overview has been given of recent numerical and analytical methods for determination of the kinetic parameters of a transformation, focusing on both isothermally and isochronally conducted transformations.
Abstract: The progress of solid-state phase transformations can generally be subdivided into three overlapping mechanisms: nucleation, growth and impingement. These can be modelled separately if hard impingement prevails. On that basis, an overview has been given of recent numerical and analytical methods for determination of the kinetic parameters of a transformation. The treatment focuses on both isothermally and isochronally conducted transformations. To extend the range of transformations that can be described analytically, a number of more or less empirical submodels, which are compatible with experimental results, has been included in the discussion. It has been shown that powerful, flexible, analytical models are possible, once the concept of time or temperature dependent growth exponent and effective activation energy, in agreement with the existing experimental observations, has been adopted. An explicit (numerical) procedure to deduce the operating kinetic processes from experimental transformation-rate data, on the basis of different nucleation, growth and hard impingement mechanisms, has been demonstrated. Without recourse to any specific kinetic model, simple recipes have been given for the determination of the growth exponent and the effective activation energy from the experimental transformation-rate data.

404 citations

Journal ArticleDOI
TL;DR: In this article, the authors outline a vision for the coordination and organization of knowledge systems that are better suited to the complex challenges of sustainability than the ones currently in place, including societal agenda setting, collective problem framing, a plurality of perspectives, integrative research processes, new norms for handling dissent and controversy, better treatment of uncertainty and of diversity of values, extended peer review, broader and more transparent metrics for evaluation, effective dialog processes, and stakeholder participation.

404 citations

Journal ArticleDOI
28 Aug 2007-Langmuir
TL;DR: The effect of the tip shape was varied systematically in fibrillar PDMS surfaces, produced by lithographic and soft-molding methods and it is found that shape exerts a stronger effect on adhesion than size.
Abstract: Following a recent bioinspired paradigm, patterned surfaces can exhibit better adhesion than flat contacts. Previous studies have verified that finer contact structures give rise to higher adhesion forces. In this study, we report on the effect of the tip shape, which was varied systematically in fibrillar PDMS surfaces, produced by lithographic and soft-molding methods. For fiber radii between 2.5 and 25 μm, it is found that shape exerts a stronger effect on adhesion than size. The highest adhesion is measured for mushroom-like and spatular terminals, which attain adhesion values 30 times in excess of the flat controls and similar to a gecko toe. These results explain the shapes commonly found in biological systems, and help in the exploration of the parameter space for artificial attachment systems.

404 citations


Authors

Showing all 28043 results

NameH-indexPapersCitations
Yi Chen2174342293080
Robert J. Lefkowitz214860147995
Michael Kramer1671713127224
Andrew G. Clark140823123333
Stephen D. Walter11251357012
Fedor Jelezko10341342616
Ulrich Gösele10260346223
Dirk Helbing10164256810
Ioan Pop101137047540
Niyazi Serdar Sariciftci9959154055
Matthias Komm9983243275
Hans-Joachim Werner9831748508
Richard R. Ernst9635253100
Xiaoming Sun9638247153
Feng Chen95213853881
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

95% related

RWTH Aachen University
96.2K papers, 2.5M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

University of Erlangen-Nuremberg
85.6K papers, 2.6M citations

93% related

Technische Universität München
123.4K papers, 4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023147
2022482
20212,588
20202,646
20192,654
20182,525