scispace - formally typeset
Search or ask a question
Institution

University of Stuttgart

EducationStuttgart, Germany
About: University of Stuttgart is a education organization based out in Stuttgart, Germany. It is known for research contribution in the topics: Laser & Finite element method. The organization has 27715 authors who have published 56370 publications receiving 1363382 citations. The organization is also known as: Universität Stuttgart.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the technical and economical benefits of different active and reactive power control strategies for grid-connected photovoltaic systems in Germany are discussed, which do not require any kind of data communication between the inverter and its environment, as well as an on-load tap changer for distribution transformers.
Abstract: This work discusses the technical and economical benefits of different active and reactive power control strategies for grid-connected photovoltaic systems in Germany. The aim of these control strategies is to limit the voltage rise, caused by a high local photovoltaic power feed-in and hence allow additional photovoltaic capacity to be connected to the mains. Autonomous inverter control strategies, which do not require any kind of data communication between the inverter and its environment, as well as an on-load tap changer for distribution transformers, is investigated. The technical and economical assessment of these strategies is derived from 12-month root mean square (rms) simulations, which are based on a real low voltage grid and measured dc power generation values. The results show that the provision of reactive power is an especially effective way to increase the hosting capacity of a low voltage grid for photovoltaic systems.

392 citations

Journal ArticleDOI
TL;DR: Dense, texture‐based flow visualization techniques are discussed, which attempt to provide a complete, dense representation of the flow field with high spatio‐temporal coherency.
Abstract: Flow visualization has been a very attractive component of scientific visualization research for a long time. Usually very large multivariate datasets require processing. These datasets often consist of a large number of sample locations and several time steps. The steadily increasing performance of computers has recently become a driving factor for a reemergence in flow visualization research, especially in texture-based techniques. In this paper, dense, texture-based flow visualization techniques are discussed. This class of techniques attempts to provide a complete, dense representation of the flow field with high spatio-temporal coherency. An attempt of categorizing closely related solutions is incorporated and presented. Fundamentals are shortly addressed as well as advantages and disadvantages of the methods.

392 citations

Journal ArticleDOI
Michael Knop1, Andreas Finger1, T. Braun1, K. Hellmuth1, Dieter H. Wolf1 
TL;DR: In DER1‐deleted cells, a substrate protein for ER degradation is retained in the ER by the same mechanism which also retains lumenal ER residents, which suggests that D ER1 acts in a process that directly removes protein from the folding environment of the ER.
Abstract: The endoplasmic reticulum (ER) of the yeast Saccharomyces cerevisiae contains of proteolytic system able to selectively degrade misfolded lumenal secretory proteins. For examination of the components involved in this degradation process, mutants were isolated. They could be divided into four complementation groups. The mutations led to stabilization of two different substrates for this process. The mutant classes were called 'der' for 'degradation in the ER'. DER1 was cloned by complementation of the der1-2 mutation. The DER1 gene codes for a novel, hydrophobic protein, that is localized to the ER. Deletion of DER1 abolished degradation of the substrate proteins. The function of the Der1 protein seems to be specifically required for the degradation process associated with the ER. The depletion of Der1 from cells causes neither detectable growth phenotypes nor a general accumulation of unfolded proteins in the ER. In DER1-deleted cells, a substrate protein for ER degradation is retained in the ER by the same mechanism which also retains lumenal ER residents. This suggests that DER1 acts in a process that directly removes protein from the folding environment of the ER.

391 citations

Journal ArticleDOI
TL;DR: The definitions in this article serve as the basis for an implementation of an abstract grid interface as C++ classes in the framework (Bastian et al. 2008, this issue).
Abstract: We give a mathematically rigorous definition of a grid for algorithms solving partial differential equations. Unlike previous approaches (Benger 2005, PhD thesis; Berti 2000, PhD thesis), our grids have a hierarchical structure. This makes them suitable for geometric multigrid algorithms and hierarchical local grid refinement. The description is also general enough to include geometrically non-conforming grids. The definitions in this article serve as the basis for an implementation of an abstract grid interface as C++ classes in the framework (Bastian et al. 2008, this issue).

390 citations

Journal ArticleDOI
TL;DR: It is demonstrated, for the first time, that the full complex spatial and temporal evolution of the rupture of ultrathin films can be modelled in quantitative agreement with experiment and introduced a novel pattern analysis method based on Minkowski measures.
Abstract: In the course of miniaturization of electronic and microfluidic devices, reliable predictions of the stability of ultrathin films have a strategic role for design purposes. Consequently, efficient computational techniques that allow for a direct comparison with experiment become increasingly important. Here we demonstrate, for the first time, that the full complex spatial and temporal evolution of the rupture of ultrathin films can be modelled in quantitative agreement with experiment. We accomplish this by combining highly controlled experiments on different film-rupture patterns with computer simulations using novel numerical schemes for thin-film equations. For the quantitative comparison of the pattern evolution in both experiment and simulation we introduce a novel pattern analysis method based on Minkowski measures. Our results are fundamental for the development of efficient tools capable of describing essential aspects of thin-film flow in technical systems.

389 citations


Authors

Showing all 28043 results

NameH-indexPapersCitations
Yi Chen2174342293080
Robert J. Lefkowitz214860147995
Michael Kramer1671713127224
Andrew G. Clark140823123333
Stephen D. Walter11251357012
Fedor Jelezko10341342616
Ulrich Gösele10260346223
Dirk Helbing10164256810
Ioan Pop101137047540
Niyazi Serdar Sariciftci9959154055
Matthias Komm9983243275
Hans-Joachim Werner9831748508
Richard R. Ernst9635253100
Xiaoming Sun9638247153
Feng Chen95213853881
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

95% related

RWTH Aachen University
96.2K papers, 2.5M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

University of Erlangen-Nuremberg
85.6K papers, 2.6M citations

93% related

Technische Universität München
123.4K papers, 4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023147
2022482
20212,588
20202,646
20192,654
20182,525