scispace - formally typeset
Search or ask a question
Institution

University of Stuttgart

EducationStuttgart, Germany
About: University of Stuttgart is a education organization based out in Stuttgart, Germany. It is known for research contribution in the topics: Laser & Finite element method. The organization has 27715 authors who have published 56370 publications receiving 1363382 citations. The organization is also known as: Universität Stuttgart.


Papers
More filters
Journal ArticleDOI
TL;DR: By fabricating plasmonic nanostructures on laser-deposited magneto-optical thin films, Faraday rotation is enhanced by one order of magnitude in this experiment, while high transparency is maintained.
Abstract: The Faraday effect rotates the polarization plane of light in magneto-optical materials and is used for optical isolators blocking unwanted backscattering of light. Usually a small effect, Chin et al. have observed a large enhancement of the optical rotation by magneto-plasmonics.

381 citations

Journal ArticleDOI
TL;DR: The presented results provide the first (theoretical) analysis of closed-loop properties, resulting from a simple, purely data-driven MPC scheme, including a slack variable with regularization in the cost.
Abstract: We propose a robust data-driven model predictive control (MPC) scheme to control linear time-invariant systems. The scheme uses an implicit model description based on behavioral systems theory and past measured trajectories. In particular, it does not require any prior identification step, but only an initially measured input–output trajectory as well as an upper bound on the order of the unknown system. First, we prove exponential stability of a nominal data-driven MPC scheme with terminal equality constraints in the case of no measurement noise. For bounded additive output measurement noise, we propose a robust modification of the scheme, including a slack variable with regularization in the cost. We prove that the application of this robust MPC scheme in a multistep fashion leads to practical exponential stability of the closed loop w.r.t. the noise level. The presented results provide the first (theoretical) analysis of closed-loop properties, resulting from a simple, purely data-driven MPC scheme.

381 citations

Proceedings Article
01 Aug 2013
TL;DR: An analysis of the performance of publicly available, state-of-the-art tools on all layers and languages in the OntoNotes v5.0 corpus should set the benchmark for future development of various NLP components in syntax and semantics, and possibly encourage research towards an integrated system that makes use of the various layers jointly to improve overall performance.
Abstract: Large-scale linguistically annotated corpora have played a crucial role in advancing the state of the art of key natural language technologies such as syntactic, semantic and discourse analyzers, and they serve as training data as well as evaluation benchmarks. Up till now, however, most of the evaluation has been done on monolithic corpora such as the Penn Treebank, the Proposition Bank. As a result, it is still unclear how the state-of-the-art analyzers perform in general on data from a variety of genres or domains. The completion of the OntoNotes corpus, a large-scale, multi-genre, multilingual corpus manually annotated with syntactic, semantic and discourse information, makes it possible to perform such an evaluation. This paper presents an analysis of the performance of publicly available, state-of-the-art tools on all layers and languages in the OntoNotes v5.0 corpus. This should set the benchmark for future development of various NLP components in syntax and semantics, and possibly encourage research towards an integrated system that makes use of the various layers jointly to improve overall performance.

381 citations

Journal ArticleDOI
23 Apr 2009-Nature
TL;DR: The spectra of the vibrational ground state and of the first excited state of the Rydberg molecule, the rubidium dimer Rb(5s)–Rb(ns), agree well with simple model predictions and allow us to extract the s-wave scattering length for scattering between the R Sydberg electron and the ground-state atom, Rb (5s), in the low-energy regime.
Abstract: In a Rydberg atom, at least one electron is excited into an orbital with a very high principal quantum number that extends the atom's electronic envelope far beyond the nucleus. Based on ideas introduced by Enrico Fermi in 1934, a recent piece of theoretical work predicted that the scattering of such an electron from a second atom in the ground-state could give rise to attractive interactions. This would yield giant molecules with internuclear separations reaching several thousand Bohr radii. The spectroscopic characterization of such ultra-long-range 'Rydberg molecules' is now reported. The molecules, ultracold rubidium dimers, have spectra in good agreement with model predictions. This achievement raises the exciting prospect of realizing other exotic molecular species such as the so-called trilobite molecules in the near future. A Rydberg atom has one electron excited into an orbital with a very high principal quantum number. The scattering of such an electron from a second atom in the ground state gives rise to long-range bonding, yielding giant molecules with internuclear separations reaching several thousand Bohr radii. Using s-state rubidium Rydberg atoms with quantum numbers between 34 and 40, Bendkowsky and colleagues have now spectroscopically characterized such 'Rydberg molecules', and measured their lifetimes and polarizabilities. Rydberg atoms have an electron in a state with a very high principal quantum number, and as a result can exhibit unusually long-range interactions. One example is the bonding of two such atoms by multipole forces to form Rydberg–Rydberg molecules with very large internuclear distances1,2,3. Notably, bonding interactions can also arise from the low-energy scattering of a Rydberg electron with negative scattering length from a ground-state atom4,5. In this case, the scattering-induced attractive interaction binds the ground-state atom to the Rydberg atom at a well-localized position within the Rydberg electron wavefunction and thereby yields giant molecules that can have internuclear separations of several thousand Bohr radii6,7,8. Here we report the spectroscopic characterization of such exotic molecular states formed by rubidium Rydberg atoms that are in the spherically symmetric s state and have principal quantum numbers, n, between 34 and 40. We find that the spectra of the vibrational ground state and of the first excited state of the Rydberg molecule, the rubidium dimer Rb(5s)–Rb(ns), agree well with simple model predictions. The data allow us to extract the s-wave scattering length for scattering between the Rydberg electron and the ground-state atom, Rb(5s), in the low-energy regime (kinetic energy, <100 meV), and to determine the lifetimes and the polarizabilities of the Rydberg molecules. Given our successful characterization of s-wave bound Rydberg states, we anticipate that p-wave bound states9, trimer states10 and bound states involving a Rydberg electron with large angular momentum—so-called trilobite molecules5—will also be realized and directly probed in the near future.

379 citations

Journal ArticleDOI
TL;DR: In this article, a 7-parameter theory with a linear varying thickness stretch as an extra variable allowing also large strain effects is presented, and the authors introduce a complete 3-D constitutive law without modification.
Abstract: Conventional shell formulations, such as 3- or 5-parameter theories or even 6-parameter theories including the thickness change as extra parameter, require a condensation of the constitutive law in order to avoid a significant error due to the assumption of a linear displacement field across the thickness. This means that the normal stress in thickness direction has to either vanish or be constant. In general, these extra constraints cannot be satisfied explicitly or they lead to elaborate strain expressions. The main objective of the present study is to introduce directly a complete 3-D constitutive law without modification. Therefore, a 7-parameter theory is utilized which includes a linear varying thickness stretch as extra variable allowing also large strain effects

379 citations


Authors

Showing all 28043 results

NameH-indexPapersCitations
Yi Chen2174342293080
Robert J. Lefkowitz214860147995
Michael Kramer1671713127224
Andrew G. Clark140823123333
Stephen D. Walter11251357012
Fedor Jelezko10341342616
Ulrich Gösele10260346223
Dirk Helbing10164256810
Ioan Pop101137047540
Niyazi Serdar Sariciftci9959154055
Matthias Komm9983243275
Hans-Joachim Werner9831748508
Richard R. Ernst9635253100
Xiaoming Sun9638247153
Feng Chen95213853881
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

95% related

RWTH Aachen University
96.2K papers, 2.5M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

University of Erlangen-Nuremberg
85.6K papers, 2.6M citations

93% related

Technische Universität München
123.4K papers, 4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023147
2022482
20212,588
20202,646
20192,654
20182,525