scispace - formally typeset
Search or ask a question

Showing papers by "University of Sussex published in 2014"


Journal ArticleDOI
Keith A. Olive1, Kaustubh Agashe2, Claude Amsler3, Mario Antonelli  +222 moreInstitutions (107)
TL;DR: The review as discussed by the authors summarizes much of particle physics and cosmology using data from previous editions, plus 3,283 new measurements from 899 Japers, including the recently discovered Higgs boson, leptons, quarks, mesons and baryons.
Abstract: The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 Japers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as heavy neutrinos, supersymmetric and technicolor particles, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Supersymmetry, Extra Dimensions, Particle Detectors, Probability, and Statistics. Among the 112 reviews are many that are new or heavily revised including those on: Dark Energy, Higgs Boson Physics, Electroweak Model, Neutrino Cross Section Measurements, Monte Carlo Neutrino Generators, Top Quark, Dark Matter, Dynamical Electroweak Symmetry Breaking, Accelerator Physics of Colliders, High-Energy Collider Parameters, Big Bang Nucleosynthesis, Astrophysical Constants and Cosmological Parameters.

7,337 citations


Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, C. Armitage-Caplan3, Monique Arnaud4  +324 moreInstitutions (70)
TL;DR: In this paper, the authors present the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra, which are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations.
Abstract: This paper presents the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra. We find that the Planck spectra at high multipoles (l ≳ 40) are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations. Within the context of this cosmology, the Planck data determine the cosmological parameters to high precision: the angular size of the sound horizon at recombination, the physical densities of baryons and cold dark matter, and the scalar spectral index are estimated to be θ∗ = (1.04147 ± 0.00062) × 10-2, Ωbh2 = 0.02205 ± 0.00028, Ωch2 = 0.1199 ± 0.0027, and ns = 0.9603 ± 0.0073, respectively(note that in this abstract we quote 68% errors on measured parameters and 95% upper limits on other parameters). For this cosmology, we find a low value of the Hubble constant, H0 = (67.3 ± 1.2) km s-1 Mpc-1, and a high value of the matter density parameter, Ωm = 0.315 ± 0.017. These values are in tension with recent direct measurements of H0 and the magnitude-redshift relation for Type Ia supernovae, but are in excellent agreement with geometrical constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent level precision using Planck CMB data alone. We use high-resolution CMB data together with Planck to provide greater control on extragalactic foreground components in an investigation of extensions to the six-parameter ΛCDM model. We present selected results from a large grid of cosmological models, using a range of additional astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured over the standard six-parameter ΛCDM cosmology. The deviation of the scalar spectral index from unity isinsensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find an upper limit of r0.002< 0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles beyond the three families of neutrinos in the standard model. Using BAO and CMB data, we find Neff = 3.30 ± 0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the sum of neutrino masses. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of Neff = 3.046. We find no evidence for dynamical dark energy; using BAO and CMB data, the dark energy equation of state parameter is constrained to be w = -1.13-0.10+0.13. We also use the Planck data to set limits on a possible variation of the fine-structure constant, dark matter annihilation and primordial magnetic fields. Despite the success of the six-parameter ΛCDM model in describing the Planck data at high multipoles, we note that this cosmology does not provide a good fit to the temperature power spectrum at low multipoles. The unusual shape of the spectrum in the multipole range 20 ≲ l ≲ 40 was seen previously in the WMAP data and is a real feature of the primordial CMB anisotropies. The poor fit to the spectrum at low multipoles is not of decisive significance, but is an “anomaly” in an otherwise self-consistent analysis of the Planck temperature data.

7,060 citations


Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, M. I. R. Alves2, C. Armitage-Caplan3  +469 moreInstitutions (89)
TL;DR: The European Space Agency's Planck satellite, dedicated to studying the early Universe and its subsequent evolution, was launched 14 May 2009 and has been scanning the microwave and submillimetre sky continuously since 12 August 2009 as discussed by the authors.
Abstract: The European Space Agency’s Planck satellite, dedicated to studying the early Universe and its subsequent evolution, was launched 14 May 2009 and has been scanning the microwave and submillimetre sky continuously since 12 August 2009. In March 2013, ESA and the Planck Collaboration released the initial cosmology products based on the first 15.5 months of Planck data, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the mission and its performance, the processing, analysis, and characteristics of the data, the scientific results, and the science data products and papers in the release. The science products include maps of the cosmic microwave background (CMB) and diffuse extragalactic foregrounds, a catalogue of compact Galactic and extragalactic sources, and a list of sources detected through the Sunyaev-Zeldovich effect. The likelihood code used to assess cosmological models against the Planck data and a lensing likelihood are described. Scientific results include robust support for the standard six-parameter ΛCDM model of cosmology and improved measurements of its parameters, including a highly significant deviation from scale invariance of the primordial power spectrum. The Planck values for these parameters and others derived from them are significantly different from those previously determined. Several large-scale anomalies in the temperature distribution of the CMB, first detected by WMAP, are confirmed with higher confidence. Planck sets new limits on the number and mass of neutrinos, and has measured gravitational lensing of CMB anisotropies at greater than 25σ. Planck finds no evidence for non-Gaussianity in the CMB. Planck’s results agree well with results from the measurements of baryon acoustic oscillations. Planck finds a lower Hubble constant than found in some more local measures. Some tension is also present between the amplitude of matter fluctuations (σ8) derived from CMB data and that derived from Sunyaev-Zeldovich data. The Planck and WMAP power spectra are offset from each other by an average level of about 2% around the first acoustic peak. Analysis of Planck polarization data is not yet mature, therefore polarization results are not released, although the robust detection of E-mode polarization around CMB hot and cold spots is shown graphically.

1,719 citations


Journal ArticleDOI
TL;DR: It is argued Bayes factors allow theory to be linked to data in a way that overcomes the weaknesses of the other approaches, and provides a coherent approach to determining whether non-significant results support a null hypothesis over a theory, or whether the data are just insensitive.
Abstract: No scientific conclusion follows automatically from a statistically non-significant result, yet people routinely use non-significant results to guide conclusions about the status of theories (or the effectiveness of practices). To know whether a non-significant result counts against a theory, or if it just indicates data insensitivity, researchers must use one of: power, intervals (such as confidence or credibility intervals), or else an indicator of the relative evidence for one theory over another, such as a Bayes factor. I argue Bayes factors allow theory to be linked to data in a way that overcomes the weaknesses of the other approaches. Specifically, Bayes factors use the data themselves to determine their sensitivity in distinguishing theories (unlike power), and they make use of those aspects of a theory’s predictions that are often easiest to specify (unlike power and intervals, which require specifying the minimal interesting value in order to address theory). Bayes factors provide a coherent approach to determining whether non-significant results support a null hypothesis over a theory, or whether the data are just insensitive. They allow accepting and rejecting the null hypothesis to be put on an equal footing. Concrete examples are provided to indicate the range of application of a simple online Bayes calculator, which reveal both the strengths and weaknesses of Bayes factors.

1,496 citations


Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, Frederico Arroja4  +321 moreInstitutions (79)
TL;DR: In this article, the authors present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey.
Abstract: We present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey, which includes more than twice the integration time of the nominal survey used for the 2013 release papers. The Planck full mission temperature data and a first release of polarization data on large angular scales measure the spectral index of curvature perturbations to be ns = 0.968 ± 0.006 and tightly constrain its scale dependence to dns/ dlnk = −0.003 ± 0.007 when combined with the Planck lensing likelihood. When the Planck high-l polarization data are included, the results are consistent and uncertainties are further reduced. The upper bound on the tensor-to-scalar ratio is r0.002< 0.11 (95% CL). This upper limit is consistent with the B-mode polarization constraint r< 0.12 (95% CL) obtained from a joint analysis of the BICEP2/Keck Array and Planck data. These results imply that V(φ) ∝ φ2 and natural inflation are now disfavoured compared to models predicting a smaller tensor-to-scalar ratio, such as R2 inflation. We search for several physically motivated deviations from a simple power-law spectrum of curvature perturbations, including those motivated by a reconstruction of the inflaton potential not relying on the slow-roll approximation. We find that such models are not preferred, either according to a Bayesian model comparison or according to a frequentist simulation-based analysis. Three independent methods reconstructing the primordial power spectrum consistently recover a featureless and smooth over the range of scales 0.008 Mpc-1 ≲ k ≲ 0.1 Mpc-1. At large scales, each method finds deviations from a power law, connected to a deficit at multipoles l ≈ 20−40 in the temperature power spectrum, but at an uncompelling statistical significance owing to the large cosmic variance present at these multipoles. By combining power spectrum and non-Gaussianity bounds, we constrain models with generalized Lagrangians, including Galileon models and axion monodromy models. The Planck data are consistent with adiabatic primordial perturbations, and the estimated values for the parameters of the base Λ cold dark matter (ΛCDM) model are not significantly altered when more general initial conditions are admitted. In correlated mixed adiabatic and isocurvature models, the 95% CL upper bound for the non-adiabatic contribution to the observed CMB temperature variance is | αnon - adi | < 1.9%, 4.0%, and 2.9% for CDM, neutrino density, and neutrino velocity isocurvature modes, respectively. We have tested inflationary models producing an anisotropic modulation of the primordial curvature power spectrum findingthat the dipolar modulation in the CMB temperature field induced by a CDM isocurvature perturbation is not preferred at a statistically significant level. We also establish tight constraints on a possible quadrupolar modulation of the curvature perturbation. These results are consistent with the Planck 2013 analysis based on the nominal mission data and further constrain slow-roll single-field inflationary models, as expected from the increased precision of Planck data using the full set of observations.

1,401 citations


Journal ArticleDOI
10 Oct 2014-Science
TL;DR: A comprehensive mid-term assessment of progress toward 20 biodiversity-related “Aichi Targets” to be achieved within a decade is provided using 55 indicator data sets and pinpoints the problems and areas that will need the most attention in the next few years.
Abstract: In 2010, the international community, under the auspices of the Convention on Biological Diversity, agreed on 20 biodiversity-related “Aichi Targets” to be achieved within a decade. We provide a comprehensive mid-term assessment of progress toward these global targets using 55 indicator data sets. We projected indicator trends to 2020 using an adaptive statistical framework that incorporated the specific properties of individual time series. On current trajectories, results suggest that despite accelerating policy and management responses to the biodiversity crisis, the impacts of these efforts are unlikely to be reflected in improved trends in the state of biodiversity by 2020. We highlight areas of societal endeavor requiring additional efforts to achieve the Aichi Targets, and provide a baseline against which to assess future progress.

970 citations


Journal ArticleDOI
TL;DR: Coastal flood damage and adaptation costs under 21st century sea-level rise are assessed on a global scale taking into account a wide range of uncertainties in continental topography data, population data, protection strategies, socioeconomic development and sea- level rise.
Abstract: Coastal flood damage and adaptation costs under 21st century sea-level rise are assessed on a global scale taking into account a wide range of uncertainties in continental topography data, population data, protection strategies, socioeconomic development and sea-level rise. Uncertainty in global mean and regional sea level was derived from four different climate models from the Coupled Model Intercomparison Project Phase 5, each combined with three land-ice scenarios based on the published range of contributions from ice sheets and glaciers. Without adaptation, 0.2-4.6% of global population is expected to be flooded annually in 2100 under 25-123 cm of global mean sea-level rise, with expected annual losses of 0.3-9.3% of global gross domestic product. Damages of this magnitude are very unlikely to be tolerated by society and adaptation will be widespread. The global costs of protecting the coast with dikes are significant with annual investment and maintenance costs of US$ 12-71 billion in 2100, but much smaller than the global cost of avoided damages even without accounting for indirect costs of damage to regional production supply. Flood damages by the end of this century are much more sensitive to the applied protection strategy than to variations in climate and socioeconomic scenarios as well as in physical data sources (topography and climate model). Our results emphasize the central role of long-term coastal adaptation strategies. These should also take into account that protecting large parts of the developed coast increases the risk of catastrophic consequences in the case of defense failure.

886 citations


Journal ArticleDOI
18 Jun 2014-Neuron
TL;DR: Tau demonstrates essential characteristics of a prion, which might explain the phenotypic diversity of tauopathies and could enable more effective diagnosis and therapy.

813 citations


Journal ArticleDOI
TL;DR: The theoretical basis, computational strategy and application to empirical G-causality inference of the MVGC Toolbox are explained and the advantages of the Toolbox over previous methods in terms of computational accuracy and statistical inference are shown.

771 citations


Journal ArticleDOI
TL;DR: It is suggested that hesitant attitudes to vaccination are prevalent and may be increasing since the influenza pandemic of 2009, and that rebuilding this trust is a multi-stakeholder problem requiring a co-ordinated strategy.

720 citations


Journal ArticleDOI
TL;DR: This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses toClimate change.
Abstract: Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change’s representative concentration pathway with end-of-century radiative forcing of 8.5 W/m2. The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, C. Armitage-Caplan3, Monique Arnaud2  +326 moreInstitutions (66)
TL;DR: In this article, the authors describe the all-sky Planck catalogue of clusters and cluster candidates derived from Sunyaev-Zeldovich (SZ) effect detections using the first 15.5 months of Planck satellite observations.
Abstract: We describe the all-sky Planck catalogue of clusters and cluster candidates derived from Sunyaev-Zeldovich (SZ) effect detections using the first 15.5 months of Planck satellite observations. The catalogue contains 1227 entries, making it over six times the size of the Planck Early SZ (ESZ) sample and the largest SZ-selected catalogue to date. It contains 861 confirmed clusters, of which 178 have been confirmed as clusters, mostly through follow-up observations, and a further 683 are previously-known clusters. The remaining 366 have the status of cluster candidates, and we divide them into three classes according to the quality of evidence that they are likely to be true clusters. The Planck SZ catalogue is the deepest all-sky cluster catalogue, with redshifts up to about one, and spans the broadest cluster mass range from (0.1 to 1.6) x 10(15) M-circle dot. Confirmation of cluster candidates through comparison with existing surveys or cluster catalogues is extensively described, as is the statistical characterization of the catalogue in terms of completeness and statistical reliability. The outputs of the validation process are provided as additional information. This gives, in particular, an ensemble of 813 cluster redshifts, and for all these Planck clusters we also include a mass estimated from a newly-proposed SZ-mass proxy. A refined measure of the SZ Compton parameter for the clusters with X-ray counter-parts is provided, as is an X-ray flux for all the Planck clusters not previously detected in X-ray surveys.

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the behavior of the gas-to-dust mass ratio (G/D) of local Universe galaxies over a wide metallicity range and investigated several explanations for the observed relation and scatter.
Abstract: Aims. The goal of this paper is to analyse the behaviour of the gas-to-dust mass ratio (G/D) of local Universe galaxies over a wide metallicity range. We especially focus on the low-metallicity part of the G/D vs metallicity relation and investigate several explanations for the observed relation and scatter.Methods. We assembled a total of 126 galaxies, covering a 2 dex metallicity range and with 30% of the sample with 12 + log(O/H)≤ 8.0. We homogeneously determined the dust masses with a semi-empirical dust model including submm constraints. The atomic and molecular gas masses have been compiled from the literature. We used two XCO scenarios to estimate the molecular gas mass: the Galactic conversion factor, XCO,MW, and a XCO that depends on the metallicity XCO,Z (∝Z-2). We modelled the observed trend of the G/D with metallicity using two simple power laws (slope of –1 and free) and a broken power law. Correlations with morphological type, stellar masses, star formation rates, and specific star formation rates are also discussed. We then compared the observed evolution of the G/D with predictions from several chemical evolution models and explored different physical explanations for the observed scatter in the G/D values.Results. We find that out of the five tested galactic parameters, metallicity is the main physical property of the galaxy driving the observed G/D. The G/D versus metallicity relation cannot be represented by a single power law with a slope of –1 over the whole metallicity range. The observed trend is steeper for metallicities lower than ~8.0. A large scatter is observed in the G/D values for a given metallicity: in metallicity bins of ~0.1 dex, the dispersion around the mean value is ~0.37 dex. On average, the broken power law reproduces the observed G/D best compared to the two power laws (slope of –1 or free) and provides estimates of the G/D that are accurate to a factor of 1.6. The good agreement of observed values of the G/D and its scatter with respect to metallicity with the predicted values of the three tested chemical evolution models allows us to infer that the scatter in the relation is intrinsic to galactic properties, reflecting the different star formation histories, dust destruction efficiencies, dust grain size distributions, and chemical compositions across the sample. Conclusions. Our results show that the chemical evolution of low-metallicity galaxies, traced by their G/D, strongly depends on their local internal conditions and individual histories. The large scatter in the observed G/D at a given metallicity reflects the impact of various processes occurring during the evolution of a galaxy. Despite the numerous degeneracies affecting them, disentangling these various processes is now the next step.

Journal ArticleDOI
TL;DR: In this paper, the authors report a qualitative study of the thoughts, feelings and experiences of 15 UK household food purchasers, based on semi-structured interviews, revealing potentially conflicting personal goals which may hinder existing food waste reduction attempts.
Abstract: The amount of food discarded by UK households is substantial and, to a large extent, avoidable. Furthermore, such food waste has serious environmental consequences. If household food waste reduction initiatives are to be successful they will need to be informed by people's motivations and barriers to minimising household food waste. This paper reports a qualitative study of the thoughts, feelings and experiences of 15 UK household food purchasers, based on semi-structured interviews. Two core categories of motives to minimise household food waste were identified: (1) waste concerns and (2) doing the ‘right’ thing. A third core category illustrated the importance of food management skills in empowering people to keep household food waste to a minimum. Four core categories of barriers to minimising food waste were also identified: (1) a ‘good’ provider identity; (2) minimising inconvenience; (3) lack of priority; and (4) exemption from responsibility. The wish to avoid experiencing negative emotions (such as guilt, frustration, annoyance, embarrassment or regret) underpinned both the motivations and the barriers to minimising food waste. Findings thus reveal potentially conflicting personal goals which may hinder existing food waste reduction attempts.

Journal ArticleDOI
TL;DR: P is presented, which captures the basic phenomenology of the seven-dimensional parameter space of binary configurations with only three key physical parameters and can be used to develop GW searches, to study the implications for astrophysical measurements, and as a simple conceptual framework to form the basis of generic-binary waveform modeling in the advanced-detector era.
Abstract: The construction of a model of the gravitational-wave (GW) signal from generic configurations of spinning-black-hole binaries, through inspiral, merger, and ringdown, is one of the most pressing theoretical problems in the buildup to the era of GW astronomy. We present the first such model in the frequency domain, PhenomP, which captures the basic phenomenology of the seven-dimensional parameter space of binary configurations with only three key physical parameters. Two of these (the binary’s mass ratio and an effective total spin parallel to the orbital angular momentum, which determines the inspiral rate) define an underlying nonprecessing-binary model. The nonprecessing-binary waveforms are then twisted up with approximate expressions for the precessional motion, which require only one additional physical parameter, an effective precession spin, χp. All other parameters (total mass, sky location, orientation and polarization, and initial phase) can be specified trivially. The model is constructed in the frequency domain, which will be essential for efficient GW searches and source measurements. We have tested the model’s fidelity for GW applications by comparison against hybrid post-Newtonian-numerical-relativity waveforms at a variety of configurations—although we did not use these numerical simulations in the construction of the model. Our model can be used to develop GW searches, to study the implications for astrophysical measurements, and as a simple conceptual framework to form the basis of generic-binary waveform modeling in the advanced-detector era.

Journal ArticleDOI
TL;DR: This meta-analysis investigates the relationship between individuals' materialistic orientation and their personal well-being and discusses implications for the measurement of materialist values and the need for theoretical and empirical advances to explore underlying processes, which likely will require more experimental, longitudinal, and developmental research.
Abstract: This meta-analysis investigates the relationship between individuals' materialistic orientation and their personal well-being. Theoretical approaches in psychology agree that prioritizing money and associated aims is negatively associated with individuals' well-being but differ in their implications for whether this is invariably the case. To address these and other questions, we examined 753 effect sizes from 259 independent samples. Materialism was associated with significantly lower well-being for the most widely used, multifaceted measures (materialist values and beliefs, r = -.19, ρ = -.24; relative importance of materialist goals, r = -.16, ρ = -.21), more than for measures assessing emphasis on money alone (rs = -.08 to -.11, ρs = -.09 to -.14). The relationship also depended on type of well-being outcome, with largest effects for risky health and consumer behaviors and for negative self-appraisals (rs = -.28 to -.44, ρs = -.32 to -.53) and weakest effects for life satisfaction and negative affect (rs = -.13 to -.15, ρs = -.17 to -.18). Moderator analyses revealed that the strength of the effect depended on certain demographic factors (gender and age), on value context (study/work environments that support materialistic values and cultures that emphasize affective autonomy), and on cultural economic indicators (economic growth and wealth differentials). Mediation analyses suggested that the negative link may be explained by poor psychological need satisfaction. We discuss implications for the measurement of materialist values and the need for theoretical and empirical advances to explore underlying processes, which likely will require more experimental, longitudinal, and developmental research.

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, C. Armitage-Caplan3, Monique Arnaud4  +299 moreInstitutions (65)
TL;DR: The Planck nominal mission cosmic microwave background (CMB) maps yield unprecedented constraints on primordial non-Gaussianity (NG) using three optimal bispectrum estimators, separable template-fitting (KSW), binned, and modal as discussed by the authors.
Abstract: The Planck nominal mission cosmic microwave background (CMB) maps yield unprecedented constraints on primordial non-Gaussianity (NG). Using three optimal bispectrum estimators, separable template-fitting (KSW), binned, and modal, we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result fNLlocal = 2.7 ± 5.8, fNLequil = -42 ± 75, and fNLorth = -25 ± 39 (68% CL statistical). Non-Gaussianity is detected in the data; using skew-Cl statistics we find a nonzero bispectrum from residual point sources, and the integrated-Sachs-Wolfe-lensing bispectrum at a level expected in the ΛCDM scenario. The results are based on comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques, pass an extensive suite of tests, and are confirmed by skew-Cl, wavelet bispectrum and Minkowski functional estimators. Beyond estimates of individual shape amplitudes, we present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and thus derive constraints on early-Universe scenarios that generate primordial NG, including general single-field models of inflation, excited initial states (non-Bunch-Davies vacua), and directionally-dependent vector models. We provide an initial survey of scale-dependent feature and resonance models. These results bound both general single-field and multi-field model parameter ranges, such as the speed of sound, cs ≥ 0.02 (95% CL), in an effective field theory parametrization, and the curvaton decay fraction rD ≥ 0.15 (95% CL). The Planck data significantly limit the viable parameter space of the ekpyrotic/cyclic scenarios. The amplitude of the four-point function in the local model τNL< 2800 (95% CL). Taken together, these constraints represent the highest precision tests to date of physical mechanisms for the origin of cosmic structure.

Journal ArticleDOI
TL;DR: This introductory essay looks back on the two decades since the journal Public Understanding of Science was launched and can see narratives of continuity and change around the practice and politics of public engagement with science.
Abstract: This introductory essay looks back on the two decades since the journal Public Understanding of Science was launched. Drawing on the invited commentaries in this special issue, we can see narratives of continuity and change around the practice and politics of public engagement with science. Public engagement would seem to be a necessary but insufficient part of opening up science and its governance. Those of us who have been involved in advocating, conducting and evaluating public engagement practice could be accused of over-promising. If we, as social scientists, are going to continue a normative commitment to the idea of public engagement, we should therefore develop new lines of argument and analysis. Our support for the idea of public engagement needs qualifying, as part of a broader, more ambitious interest in the idea of publicly engaged science.

Journal ArticleDOI
TL;DR: This work employed structure-based design with a focused chemical library to discover specific MRE11 endo- or exonuclease inhibitors and define distinct nuclease roles in DSB repair, and support a mechanism whereby M RE11 endonucleasing initiates resection, thereby licensing HR followed by MRE 11 exonuclelease and EXO1/BLM bidirectional resection toward and away from the DNA end, which commits to HR.

Journal ArticleDOI
06 Feb 2014-Nature
TL;DR: The authors' analyses indicate that both graminoids and forbs would have featured in megafaunal diets, and question the predominance of a Late Quaternary graminoid-dominated Arctic mammoth steppe.
Abstract: Although it is generally agreed that the Arctic flora is among the youngest and least diverse on Earth, the processes that shaped it are poorly understood. Here we present 50 thousand years (kyr) of Arctic vegetation history, derived from the first large-scale ancient DNA metabarcoding study of circumpolar plant diversity. For this interval we also explore nematode diversity as a proxy for modelling vegetation cover and soil quality, and diets of herbivorous megafaunal mammals, many of which became extinct around 10 kyr bp (before present). For much of the period investigated, Arctic vegetation consisted of dry steppe-tundra dominated by forbs (non-graminoid herbaceous vascular plants). During the Last Glacial Maximum (25–15 kyr bp), diversity declined markedly, although forbs remained dominant. Much changed after 10 kyr bp, with the appearance of moist tundra dominated by woody plants and graminoids. Our analyses indicate that both graminoids and forbs would have featured in megafaunal diets. As such, our findings question the predominance of a Late Quaternary graminoid-dominated Arctic mammoth steppe.

Journal ArticleDOI
M. Bicer1, H. Duran Yildiz1, I. Yildiz2, G. Coignet3, Marco Delmastro3, Theodoros Alexopoulos4, Christophe Grojean, Stefan Antusch5, Tanaji Sen6, Hong-Jian He7, K. Potamianos8, Sigve Haug9, Asunción Moreno, Arno Heister10, Veronica Sanz11, Guillelmo Gomez-Ceballos12, Markus Klute12, Marco Zanetti12, Lian-Tao Wang13, Mogens Dam14, Celine Boehm15, Nigel Glover15, Frank Krauss15, Alexander Lenz15, Michael Syphers16, Christos Leonidopoulos17, Vitaliano Ciulli, P. Lenzi, Giacomo Sguazzoni, Massimo Antonelli, Manuela Boscolo, Umberto Dosselli, O. Frasciello, C. Milardi, G. Venanzoni, Mikhail Zobov, J.J. van der Bij18, M. De Gruttola19, D. W. Kim20, Michail Bachtis21, A. Butterworth21, C. Bernet21, Cristina Botta21, Federico Carminati21, A. David21, L. Deniau21, David D'Enterria21, Gerardo Ganis21, Brennan Goddard21, Gian F. Giudice21, Patrick Janot21, John Jowett21, Carlos Lourenco21, L. Malgeri21, Emilio Meschi21, Filip Moortgat21, Pasquale Musella21, J. A. Osborne21, Luca Perrozzi21, Maurizio Pierini21, Louis Rinolfi21, A. De Roeck21, Juan Rojo21, G. Roy21, Andrea Sciabà21, A. Valassi21, C. S. Waaijer21, Jorg Wenninger21, H. K. Woehri21, Frank Zimmermann21, A. Blondel22, Michael Koratzinos22, Philippe Mermod22, Yasar Onel23, R. Talman24, E. Castaneda Miranda25, Eugene Bulyak, D. Porsuk, Dmytro Kovalskyi26, Sanjay Padhi26, Pietro Faccioli, John Ellis27, Mario Campanelli28, Yang Bai29, M. Chamizo, Robert Appleby30, Hywel Owen30, H. Maury Cuna31, C. Gracios32, German Ardul Munoz-Hernandez32, Luca Trentadue33, E. Torrente-Lujan34, S. Wang35, David Bertsche36, A. V. Gramolin37, Valery I. Telnov37, Marumi Kado38, P. Petroff38, Patrizia Azzi, Oreste Nicrosini, Fulvio Piccinini, Guido Montagna39, F. Kapusta38, S. Laplace38, W. Da Silva38, Nectaria A. B. Gizani40, Nathaniel Craig41, Tao Han42, Claudio Luci43, Barbara Mele43, Luca Silvestrini43, Marco Ciuchini, R. Cakir44, R. Aleksan, Fabrice Couderc, Serguei Ganjour, Eric Lancon, Elizabeth Locci, P. Schwemling, M. Spiro, C. Tanguy, Jean Zinn-Justin, Stefano Moretti45, M. Kikuchi46, Haruyo Koiso46, Kazuhito Ohmi46, Katsunobu Oide46, G. Pauletta47, Roberto Ruiz de Austri48, Maxime Gouzevitch38, Subhasis Chattopadhyay49 
TL;DR: In this article, the authors present a first appraisal of the salient features of the TLEP physics potential, to serve as a baseline for a more extensive design study, and present a combination of TLEp and the VHE-LHC offers, for a great cost effectiveness, the best precision and the best search reach of all options presently on the market.
Abstract: The discovery by the ATLAS and CMS experiments of a new boson with mass around 125 GeV and with measured properties compatible with those of a Standard-Model Higgs boson, coupled with the absence of discoveries of phenomena beyond the Standard Model at the TeV scale, has triggered interest in ideas for future Higgs factories. A new circular e+e- collider hosted in a 80 to 100 km tunnel, TLEP, is among the most attractive solutions proposed so far. It has a clean experimental environment, produces high luminosity for top-quark, Higgs boson, W and Z studies, accommodates multiple detectors, and can reach energies up to the t-tbar threshold and beyond. It will enable measurements of the Higgs boson properties and of Electroweak Symmetry-Breaking (EWSB) parameters with unequalled precision, offering exploration of physics beyond the Standard Model in the multi-TeV range. Moreover, being the natural precursor of the VHE-LHC, a 100 TeV hadron machine in the same tunnel, it builds up a long-term vision for particle physics. Altogether, the combination of TLEP and the VHE-LHC offers, for a great cost effectiveness, the best precision and the best search reach of all options presently on the market. This paper presents a first appraisal of the salient features of the TLEP physics potential, to serve as a baseline for a more extensive design study.

Journal ArticleDOI
TL;DR: It is found that the compression waves in the fluid continue to be a source of GWs long after the bubbles have merged, a new effect not taken properly into account in previous modeling of the GW source.
Abstract: We report on the first three-dimensional numerical simulations of first-order phase transitions in the early Universe to include the cosmic fluid as well as the scalar field order parameter. We calculate the gravitational wave (GW) spectrum resulting from the nucleation, expansion, and collision of bubbles of the low-temperature phase, for phase transition strengths and bubble wall velocities covering many cases of interest. We find that the compression waves in the fluid continue to be a source of GWs long after the bubbles have merged, a new effect not taken properly into account in previous modeling of the GW source. For a wide range of models, the main source of the GWs produced by a phase transition is, therefore, the sound the bubbles make.

Journal ArticleDOI
TL;DR: In this paper, the authors address key implications in momentous current global energy choices, both for social science and for society, by considering contending forms of transformation centring on renewable energy, nuclear power and climate geoengineering.
Abstract: This paper addresses key implications in momentous current global energy choices – both for social science and for society. Energy can be over-used as a lens for viewing social processes. But it is nonetheless of profound importance. Understanding possible ‘sustainable energy’ transformations requires attention to many tricky issues in social theory: around agency and structure and the interplay of power, contingency and practice. These factors are as much shaping of the knowledges and normativities supposedly driving transformation, as they are shaped by them. So, ideas and hopes about possible pathways for change – as well as notions of ‘the transition’ itself – can be deeply constituted by incumbent interests. The paper addresses these dynamics by considering contending forms of transformation centring on renewable energy, nuclear power and climate geoengineering. Several challenges are identified for social science. These apply especially where there are aims to help enable more democratic exercise of social agency. They enjoin responsibilities to ‘open up’ (rather than ‘close down’), active political spaces for critical contention over alternative pathways. If due attention is to be given to marginalised interests, then a reflexive view must be taken of transformation. The paper ends with a series of concrete political lessons.

Journal ArticleDOI
TL;DR: This paper examined the extent and nature of interactions and resource flows between projects and intermediary actors in order to evaluate the utility of niche theories in the civil society context, and discussed the implications of their findings for community energy and other grass-root practitioners aiming to build robust influential niches, and for policymakers.
Abstract: System-changing innovations for sustainability transitions are pro- posed to emerge in radical innovative niches. ‘Strategic Niche Management’ theory predicts that niche-level actors and networks will aggregate learning from local projects, disseminating best practice, and encouraging innovation diffusion. Grassroots inno- vations emerging from civil society are under-researched, and so we investigate the UK community energy sector to empirically test this model. Our analysis draws on qualitative case study research with local projects, and a study of how intermediary organisa- tions support local projects. We examine the extent and nature of interactions and resource flows between projects and intermediary actors in order to evaluate the utility of niche theories in the civil society context. While networking and intermediary organisations can effectively spread some types of learning necessary for diffu- sion, this is not sufficient: tacit knowledge, trust and confidence are essential to these projects’ success, but are more difficult to abstract and translate to new settings. We discuss the implications of our findings for niche theory, for community energy and other grass- roots practitioners aiming to build robust influential niches, and for policymakers.

Journal ArticleDOI
TL;DR: In this paper, the authors compare food demand projections in 2050 for various regions and agricultural products under harmonized scenarios of socioeconomic development, climate change, and bioenergy expansion, and find that the results are more sensitive to socioeconomic assumptions than to climate change or bioenergy scenarios.

Journal ArticleDOI
24 Apr 2014-PLOS ONE
TL;DR: Effects of MBIs on primary symptom severity were found for people with a current depressive disorder and it is recommended that MBI’s might be considered as an intervention for this population.
Abstract: Objective Mindfulness-based interventions (MBIs) can reduce risk of depressive relapse for people with a history of recurrent depression who are currently well. However, the cognitive, affective and motivational features of depression and anxiety might render MBIs ineffective for people experiencing current symptoms. This paper presents a meta-analysis of randomised controlled trials (RCTs) of MBIs where participants met diagnostic criteria for a current episode of an anxiety or depressive disorder. Method Post-intervention between-group Hedges g effect sizes were calculated using a random effects model. Moderator analyses of primary diagnosis, intervention type and control condition were conducted and publication bias was assessed. Results Twelve studies met inclusion criteria (n = 578). There were significant post-intervention between-group benefits of MBIs relative to control conditions on primary symptom severity (Hedges g = −0.59, 95% CI = −0.12 to −1.06). Effects were demonstrated for depressive symptom severity (Hedges g = −0.73, 95% CI = −0.09 to −1.36), but not for anxiety symptom severity (Hedges g = −0.55, 95% CI = 0.09 to −1.18), for RCTs with an inactive control (Hedges g = −1.03, 95% CI = −0.40 to −1.66), but not where there was an active control (Hedges g = 0.03, 95% CI = 0.54 to −0.48) and effects were found for MBCT (Hedges g = −0.39, 95% CI = −0.15 to −0.63) but not for MBSR (Hedges g = −0.75, 95% CI = 0.31 to −1.81). Conclusions This is the first meta-analysis of RCTs of MBIs where all studies included only participants who were diagnosed with a current episode of a depressive or anxiety disorder. Effects of MBIs on primary symptom severity were found for people with a current depressive disorder and it is recommended that MBIs might be considered as an intervention for this population.

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, C. Armitage-Caplan3, Monique Arnaud4  +300 moreInstitutions (70)
TL;DR: In this paper, the authors used the temperature-gradient correlations induced by lensing to reconstruct a (noisy) map of the CMB lensing potential, which provides an integrated measure of the mass distribution back to the last-scattering surface.
Abstract: On the arcminute angular scales probed by Planck, the cosmic microwave background (CMB) anisotropies are gently perturbed by gravitational lensing. Here we present a detailed study of this e_ect, detecting lensing independently in the 100, 143, and 217 GHz frequency bands with an overall significance of greater than 25_.We use the temperature-gradient correlations induced by lensing to reconstruct a (noisy) map of the CMB lensing potential, which provides an integrated measure of the mass distribution back to the CMB last-scattering surface. Our lensing potential map is significantly correlated with other tracers of mass, a fact which we demonstrate using several representative tracers of large-scale structure. We estimate the power spectrum of the lensing potential, finding generally good agreement with expectations from the best-fitting _CDM model for the Planck temperature power spectrum, showing that this measurement at z = 1100 correctly predicts the properties of the lower-redshift, latertime structures which source the lensing potential. When combined with the temperature power spectrum, our measurement provides degeneracy breaking power for parameter constraints; it improves CMB-alone constraints on curvature by a factor of two and also partly breaks the degeneracy between the amplitude of the primordial perturbation power spectrum and the optical depth to reionization, allowing a measurement of the optical depth to reionization which is independent of large-scale polarization data. Discarding scale information, our measurement corresponds to a 4% constraint on the amplitude of the lensing potential power spectrum, or a 2% constraint on the root-mean-squared amplitude of matter fluctuations at z _ 2.

Journal ArticleDOI
TL;DR: The authors make the case for a richer conception predicated on broader intellectual engagement and identify some preconditions for its practical fulfilment, and suggest that interdisciplinary dialogue should engender plural representations of Earth's present and future that are reflective of divergent human values and aspirations.
Abstract: Calls for more broad-based, integrated, useful knowledge now abound in the world of global environmental change science. They evidence many scientists' desire to help humanity confront the momentous biophysical implications of its own actions. But they also reveal a limited conception of social science and virtually ignore the humanities. They thereby endorse a stunted conception of 'human dimensions' at a time when the challenges posed by global environmental change are increasing in magnitude, scale and scope. Here, we make the case for a richer conception predicated on broader intellectual engagement and identify some preconditions for its practical fulfilment. Interdisciplinary dialogue, we suggest, should engender plural representations of Earth's present and future that are reflective of divergent human values and aspirations. In turn, this might insure publics and decision-makers against overly narrow conceptions of what is possible and desirable as they consider the profound questions raised by global environmental change.

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the applicability of far-infrared fine-structure lines [Cii] 158μm, [Oi] 63μm and [Oiii] 88μm to reliably trace the star formation rate (SFR) in a sample of low-metallicity dwarf galaxies from the Herschel Dwarf Galaxy Survey and furthermore, extended the analysis to a broad sample of galaxies of various types and metallicities in the literature.
Abstract: Aims. We analyze the applicability of far-infrared fine-structure lines [Cii] 158 μm, [Oi] 63 μm, and [Oiii] 88 μm to reliably trace the star formation rate (SFR) in a sample of low-metallicity dwarf galaxies from the Herschel Dwarf Galaxy Survey and, furthermore, extend the analysis to a broad sample of galaxies of various types and metallicities in the literature. Methods. We study the trends and scatter in the relation between the SFR (as traced by GALEX FUV and MIPS 24 μm) and far-infrared line emission, on spatially resolved and global galaxy scales, in dwarf galaxies. We assemble far-infrared line measurements from the literature and infer whether the far-infrared lines can probe the SFR (as traced by the total infrared luminosity) in a variety of galaxy populations. Results. In metal-poor dwarfs, the [Oi]_(63) and [Oiii]_(88) lines show the strongest correlation with the SFR with an uncertainty on the SFR estimates better than a factor of 2, while the link between [Cii] emission and the SFR is more dispersed (uncertainty factor of 2.6). The increased scatter in the SFR–L_([CII]) relation toward low metal abundances, warm dust temperatures, and large filling factors of diffuse, highly ionized gas suggests that other cooling lines start to dominate depending on the density and ionization state of the gas. For the literature sample, we evaluate the correlations for a number of different galaxy populations. The [Cii] and [Oi]_(63) lines are considered to be reliable SFR tracers in starburst galaxies, recovering the star formation activity within an uncertainty of factor 2. For sources with composite and active galactic nucleus (AGN) classifications, all three FIR lines can recover the SFR with an uncertainty factor of 2.3. The SFR calibrations for ultra-luminous infrared galaxies (ULIRGs) are similar to starbursts/AGNs in terms of scatter but offset from the starburst/AGN SFR relations because of line deficits relative to their total infrared luminosity. While the number of detections of the FIR fine-structure lines is still very limited at high redshift for [Oi]_(63) and [Oiii]_(88), we provide an SFR calibration for [Cii].

Journal ArticleDOI
TL;DR: A comparison between movements for technologies for social inclusion now and appropriate technology in the past reveals three enduring challenges for grassroots innovation: attending to local specificities whilst simultaneously seeking wide-scale diffusion; being appropriate to existing situations that one ultimately seeks to transform; and, working with project-based solutions to goals (of social justice) whose root causes rest in structures of economic and political power as discussed by the authors.