scispace - formally typeset
Search or ask a question

Showing papers by "University of Sussex published in 2017"


Journal ArticleDOI
18 Oct 2017-PLOS ONE
TL;DR: This analysis estimates a seasonal decline of 76%, and mid-summer decline of 82% in flying insect biomass over the 27 years of study, and shows that this decline is apparent regardless of habitat type, while changes in weather, land use, and habitat characteristics cannot explain this overall decline.
Abstract: Global declines in insects have sparked wide interest among scientists, politicians, and the general public. Loss of insect diversity and abundance is expected to provoke cascading effects on food webs and to jeopardize ecosystem services. Our understanding of the extent and underlying causes of this decline is based on the abundance of single species or taxonomic groups only, rather than changes in insect biomass which is more relevant for ecological functioning. Here, we used a standardized protocol to measure total insect biomass using Malaise traps, deployed over 27 years in 63 nature protection areas in Germany (96 unique location-year combinations) to infer on the status and trend of local entomofauna. Our analysis estimates a seasonal decline of 76%, and mid-summer decline of 82% in flying insect biomass over the 27 years of study. We show that this decline is apparent regardless of habitat type, while changes in weather, land use, and habitat characteristics cannot explain this overall decline. This yet unrecognized loss of insect biomass must be taken into account in evaluating declines in abundance of species depending on insects as a food source, and ecosystem functioning in the European landscape.

2,065 citations


Journal ArticleDOI
10 Jan 2017
TL;DR: The article finds that the Global Initiative on Sharing All Influenza Data contributes to global health in at least five ways: collating the most complete repository of high‐quality influenza data in the world; facilitating the rapid sharing of potentially pandemic virus information during recent outbreaks; supporting the World Health Organization's biannual seasonal flu vaccine strain selection process; developing informal mechanisms for conflict resolution around the sharing of virus data.
Abstract: The international sharing of virus data is critical for protecting populations against le-thal infectious disease outbreaks. Scientists must rapidly share information to assessthe nature of the threat and develop new medical countermeasures. Governmentsneed the data to trace the extent of the outbreak, initiate public health responses,and coordinate access to medicines and vaccines. Recent outbreaks suggest, however,that the sharing of such data cannot be taken for granted – making the timely inter-national exchange of virus data a vital global challenge. This article undertakes thefirst analysis of the Global Initiative on Sharing All Influenza Data as an innovativepolicy effort to promote the international sharing of genetic and associated influenzavirus data. Based on more than 20 semi-structured interviews conducted with key in-formants in the international community, coupled with analysis of a wide range ofprimary and secondary sources, the article finds that the Global Initiative on SharingAll Influenza Data contributes to global health in at least five ways: (1) collating themost complete repository of high-quality influenza data in the world; (2) facilitatingthe rapid sharing of potentially pandemic virus information during recent outbreaks;(3) supporting the World Health Organization’s biannual seasonal flu vaccine strainselection process; (4) developing informal mechanisms for conflict resolution aroundthe sharing of virus data; and (5) building greater trust with several countries key toglobal pandemic preparedness.

1,570 citations


Journal ArticleDOI
Philip S. Cowperthwaite1, Edo Berger1, V. A. Villar1, Brian D. Metzger2  +158 moreInstitutions (47)
TL;DR: In this article, the Gordon and Betty Moore Foundation (GBMF5076) and the Heising-Simons Foundation (HSPF) have contributed to the creation of the DES-Brazil Consortium.
Abstract: NSF [AST-1411763, AST-1714498, DGE 1144152, PHY-1707954, AST-1518052]; NASA [NNX15AE50G, NNX16AC22G]; National Science Foundation; Kavli Foundation; Danish National Research Foundation; Niels Bohr International Academy; DARK Cosmology Centre; Gordon & Betty Moore Foundation; Heising-Simons Foundation; UCSC; Alfred P. Sloan Foundation; David and Lucile Packard Foundation; European Research Council [ERC-StG-335936]; Gordon and Betty Moore Foundation [GBMF5076]; DOE (USA); NSF (USA); MISE (Spain); STFC (UK); HEFCE (UK); NCSA (UIUC); KICP (U. Chicago); CCAPP (Ohio State); MIFPA (Texas AM); MINECO (Spain); DFG (Germany); CNPQ (Brazil); FAPERJ (Brazil); FINEP (Brazil); Argonne Lab; UC Santa Cruz; University of Cambridge; CIEMAT-Madrid; University of Chicago; University College London; DES-Brazil Consortium; University of Edinburgh; ETH Zurich; Fermilab; University of Illinois; ICE (IEEC-CSIC); IFAE Barcelona; Lawrence Berkeley Lab; LMU Munchen; Excellence Cluster Universe; University of Michigan; NOAO; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Lab; Stanford University; University of Sussex; Texas AM University; Gemini Observatory [GS-2017B-Q-8, GS-2017B-DD-4]

788 citations


Journal ArticleDOI
29 Jun 2017-Nature
TL;DR: This work demonstrates on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes, and introduces a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations.
Abstract: Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.

722 citations


Journal ArticleDOI
TL;DR: The Lancet Countdown track progress on health and climate change and provides an independent assessment of the health effects of climate change, the implementation of the Paris Agreement, 1 and 3.

676 citations


Journal ArticleDOI
TL;DR: In this paper, the authors search for excess gamma-ray emission coincident with the positions of confirmed and candidate Milky Way satellite galaxies using six years of data from the Fermi Large Area Telescope (LAT).
Abstract: We search for excess gamma-ray emission coincident with the positions of confirmed and candidate Milky Way satellite galaxies using six years of data from the Fermi Large Area Telescope (LAT). Our sample of 45 stellar systems includes 28 kinematically confirmed dark-matter-dominated dwarf spheroidal galaxies (dSphs) and 17 recently discovered systems that have photometric characteristics consistent with the population of known dSphs. For each of these targets, the relative predicted gamma-ray flux due to dark matter annihilation is taken from kinematic analysis if available, and estimated from a distance-based scaling relation otherwise, assuming that the stellar systems are DM-dominated dSphs. LAT data coincident with four of the newly discovered targets show a slight preference (each ~ 2sigma local) for gamma-ray emission in excess of the background. However, the ensemble of derived gamma-ray flux upper limits for individual targets is consistent with the expectation from analyzing random blank-sky regions, and a combined analysis of the population of stellar systems yields no globally significant excess (global significance < 1sigma ). Our analysis has increased sensitivity compared to the analysis of 15 confirmed dSphs by Ackermann et al. The observed constraints on the DM annihilation cross section are statistically consistent with the background expectation, improving by a factor of ~2 for large DM masses ({m}{DM,b\bar{b}}≳ 1 {TeV} and {m}{DM,{tau }+{tau }-}≳ 70 {GeV}) and weakening by a factor of ~1.5 at lower masses relative to previously observed limits.

562 citations


Journal ArticleDOI
TL;DR: The claim that high levels of engagement can enhance organizational performance and individual well-being has not previously been tested through a systematic review of the evidence as discussed by the authors, and the authors conducted a systematic synthesis of narrative evidence involving 214 studies focused on the meaning, antecedents and outcomes of engagement.
Abstract: The claim that high levels of engagement can enhance organizational performance and individual well-being has not previously been tested through a systematic review of the evidence. To bring coherence to the diffuse body of literature on engagement, the authors conducted a systematic synthesis of narrative evidence involving 214 studies focused on the meaning, antecedents and outcomes of engagement. The authors identified six distinct conceptualizations of engagement, with the field dominated by the Utrecht Group's ‘work engagement’ construct and measure, and by the theorization of engagement within the ‘job demands–resources’ framework. Five groups of factors served as antecedents to engagement: psychological states; job design; leadership; organizational and team factors; and organizational interventions. Engagement was found to be positively associated with individual morale, task performance, extra-role performance and organizational performance, and the evidence was most robust in relation to task performance. However, there was an over-reliance on quantitative, cross-sectional and self-report studies within the field, which limited claims of causality. To address controversies over the commonly used measures and concepts in the field and gaps in the evidence-base, the authors set out an agenda for future research that integrates emerging critical sociological perspectives on engagement with the psychological perspectives that currently dominate the field.

532 citations


Journal ArticleDOI
TL;DR: Drawing on a global sustainability science and practice perspective, it is demonstrated that there must be greater attention on interlinkages in three areas: across sectors, across societal actors, and between and among low, medium and high income countries.
Abstract: On 25 September, 2015, world leaders met at the United Nations in New York, where they adopted the Sustainable Development Goals. These 17 goals and 169 targets set out an agenda for sustainable development for all nations that embraces economic growth, social inclusion, and environmental protection. Now, the agenda moves from agreeing the goals to implementing and ultimately achieving them. Across the goals, 42 targets focus on means of implementation, and the final goal, Goal 17, is entirely devoted to means of implementation. However, these implementation targets are largely silent about interlinkages and interdependencies among goals. This leaves open the possibility of perverse outcomes and unrealised synergies. We demonstrate that there must be greater attention on interlinkages in three areas: across sectors (e.g., finance, agriculture, energy, and transport), across societal actors (local authorities, government agencies, private sector, and civil society), and between and among low, medium and high income countries. Drawing on a global sustainability science and practice perspective, we provide seven recommendations to improve these interlinkages at both global and national levels, in relation to the UN's categories of means of implementation: finance, technology, capacity building, trade, policy coherence, partnerships, and, finally, data, monitoring and accountability.

523 citations


Journal ArticleDOI
22 Sep 2017-Science
TL;DR: This work presents a “sociotechnical” framework to address the multidimensionality of the deep decarbonization challenge and shows how coevolutionary interactions between technologies and societal groups can accelerate low-carbon transitions.
Abstract: Rapid and deep reductions in greenhouse gas emission are needed to avoid dangerous climate change. This will necessitate low-carbon transitions across electricity, transport, heat, industrial, forestry, and agricultural systems. But despite recent rapid growth in renewable electricity generation, the rate of progress toward this wider goal of deep decarbonization remains slow. Moreover, many policy-oriented energy and climate researchers and models remain wedded to disciplinary approaches that focus on a single piece of the low-carbon transition puzzle, yet avoid many crucial real-world elements for accelerated transitions ( 1 ). We present a “sociotechnical” framework to address the multidimensionality of the deep decarbonization challenge and show how coevolutionary interactions between technologies and societal groups can accelerate low-carbon transitions.

520 citations


Journal ArticleDOI
Morad Aaboud, Georges Aad1, Brad Abbott2, Jalal Abdallah3  +2845 moreInstitutions (197)
TL;DR: This paper presents a short overview of the changes to the trigger and data acquisition systems during the first long shutdown of the LHC and shows the performance of the trigger system and its components based on the 2015 proton–proton collision data.
Abstract: During 2015 the ATLAS experiment recorded 3.8 fb(-1) of proton-proton collision data at a centre-of-mass energy of 13 TeV. The ATLAS trigger system is a crucial component of the experiment, respons ...

488 citations


Journal ArticleDOI
TL;DR: The Dark Energy Camera (DECam) was used to detect the optical counterpart of the first binary neutron star merger detected through gravitational-wave emission, GW170817.
Abstract: We present the Dark Energy Camera (DECam) discovery of the optical counterpart of the first binary neutron star merger detected through gravitational-wave emission, GW170817. Our observations commenced 10.5 hr post-merger, as soon as the localization region became accessible from Chile. We imaged 70 deg(2) in the i and z bands, covering 93% of the initial integrated localization probability, to a depth necessary to identify likely optical counterparts (e.g., a kilonova). At 11.4 hr post-merger we detected a bright optical transient located $10\buildrel{\prime\prime}\over{.} 6$ from the nucleus of NGC 4993 at redshift z = 0.0098, consistent (for ${H}_{0}=70$ km s(−)(1) Mpc(−)(1)) with the distance of 40 ± 8 Mpc reported by the LIGO Scientific Collaboration and the Virgo Collaboration (LVC). At detection the transient had magnitudes of $i=17.3$ and $z=17.4$, and thus an absolute magnitude of ${M}_{i}=-15.7$, in the luminosity range expected for a kilonova. We identified 1500 potential transient candidates. Applying simple selection criteria aimed at rejecting background events such as supernovae, we find the transient associated with NGC 4993 as the only remaining plausible counterpart, and reject chance coincidence at the 99.5% confidence level. We therefore conclude that the optical counterpart we have identified near NGC 4993 is associated with GW170817. This discovery ushers in the era of multi-messenger astronomy with gravitational waves and demonstrates the power of DECam to identify the optical counterparts of gravitational-wave sources.

Journal ArticleDOI
04 Aug 2017-Science
TL;DR: A roadmap of technological advances and key questions for the future of animal coloration research are provided, to identify hitherto unrecognized challenges for this multi- and interdisciplinary field.
Abstract: Coloration mediates the relationship between an organism and its environment in important ways, including social signaling, antipredator defenses, parasitic exploitation, thermoregulation, and protection from ultraviolet light, microbes, and abrasion. Methodological breakthroughs are accelerating knowledge of the processes underlying both the production of animal coloration and its perception, experiments are advancing understanding of mechanism and function, and measurements of color collected noninvasively and at a global scale are opening windows to evolutionary dynamics more generally. Here we provide a roadmap of these advances and identify hitherto unrecognized challenges for this multi- and interdisciplinary field.

Journal ArticleDOI
Georges Aad1, Alexander Kupco2, P. Davison3, Samuel Webb4  +2888 moreInstitutions (192)
TL;DR: Topological cell clustering is established as a well-performing calorimeter signal definition for jet and missing transverse momentum reconstruction in ATLAS and is exploited to apply a local energy calibration and corrections depending on the nature of the cluster.
Abstract: The reconstruction of the signal from hadrons and jets emerging from the proton–proton collisions at the Large Hadron Collider (LHC) and entering the ATLAS calorimeters is based on a three-dimensional topological clustering of individual calorimeter cell signals. The cluster formation follows cell signal-significance patterns generated by electromagnetic and hadronic showers. In this, the clustering algorithm implicitly performs a topological noise suppression by removing cells with insignificant signals which are not in close proximity to cells with significant signals. The resulting topological cell clusters have shape and location information, which is exploited to apply a local energy calibration and corrections depending on the nature of the cluster. Topological cell clustering is established as a well-performing calorimeter signal definition for jet and missing transverse momentum reconstruction in ATLAS.

Journal ArticleDOI
TL;DR: There is strong evidence that insomnia is a causal factor in the occurrence of psychotic experiences and other mental health problems, and the treatment of disrupted sleep might require a higher priority in mental health provision.

Journal ArticleDOI
TL;DR: A growing body of evidence demonstrates that persistent, low levels of neonicotinoids can have negative impacts on a wide range of free-living organisms.
Abstract: Neonicotinoid pesticides were first introduced in the mid-1990s, and since then, their use has grown rapidly. They are now the most widely used class of insecticides in the world, with the majority of applications coming from seed dressings. Neonicotinoids are water-soluble, and so can be taken up by a developing plant and can be found inside vascular tissues and foliage, providing protection against herbivorous insects. However, only approximately 5% of the neonicotinoid active ingredient is taken up by crop plants and most instead disperses into the wider environment. Since the mid-2000s, several studies raised concerns that neonicotinoids may be having a negative effect on non-target organisms, in particular on honeybees and bumblebees. In response to these studies, the European Food Safety Authority (EFSA) was commissioned to produce risk assessments for the use of clothianidin, imidacloprid and thiamethoxam and their impact on bees. These risk assessments concluded that the use of these compounds on certain flowering crops poses a high risk to bees. On the basis of these findings, the European Union adopted a partial ban on these substances in May 2013. The purpose of the present paper is to collate and summarise scientific evidence published since 2013 that investigates the impact of neonicotinoids on non-target organisms. Whilst much of the recent work has focused on the impact of neonicotinoids on bees, a growing body of evidence demonstrates that persistent, low levels of neonicotinoids can have negative impacts on a wide range of free-living organisms.

Journal ArticleDOI
TL;DR: This work describes the afferent signalling, central processing, and neural and mental representation of internal bodily signals in interoception, and describes the recognition of dissociable psychological dimensions of interoceptions.
Abstract: Influential theories suggest emotional feeling states arise from physiological changes from within the body. Interoception describes the afferent signalling, central processing, and neural and mental representation of internal bodily signals. Recent progress is made in conceptualizing interoception and its neural underpinnings. These developments are supported by empirical data concerning interoceptive mechanisms and their contribution to emotion. Fresh insights include description of short-term interoceptive effects on neural and mental processes (including fear-specific cardiac effects), the recognition of dissociable psychological dimensions of interoception, and models of interoceptive predictive coding that explain emotions and selfhood (reinforced by structural anatomical models and brain and experimental findings). This growing grasp of interoception is enriching our understanding of emotion and its disorders.

Journal ArticleDOI
TL;DR: In this article, the authors define energy justice as a global energy system that fairly distributes both the benefits and burdens of energy services, and one that contributes to more representative and inclusive energy decision-making.

Journal ArticleDOI
TL;DR: It is argued that pollinators put high-priority and high-impact urban conservation within reach, and transforming how environmental managers view the city can improve citizen engagement and contribute to the development of more sustainable urbanization.
Abstract: Urban ecology research is changing how we view the biological value and ecological importance of cities. Lagging behind this revised image of the city are natural resource management agencies’ urban conservation programs that historically have invested in education and outreach rather than programs designed to achieve high-priority species conservation results. This essay synthesizes research on urban bee species diversity and abundance to suggest how urban conservation can be repositioned to better align with a newly unfolding image of urban landscapes. We argue that pollinators put high-priority and high-impact urban conservation within reach. In a rapidly urbanizing world, transforming how environmental managers view the city can improve citizen engagement while exploring more sustainable practices of urbanization.

Journal ArticleDOI
14 Apr 2017-Science
TL;DR: A large-scale meta-analysis of hunting trends and impacts across the tropics found that bird and mammal populations were considerably lower in areas where hunting occurred, and hunting pressure was higher in areas with better accessibility to major towns where wild meat could be traded.
Abstract: Hunting is a major driver of biodiversity loss, but a systematic large-scale estimate of hunting-induced defaunation is lacking. We synthesized 176 studies to quantify hunting-induced declines of mammal and bird populations across the tropics. Bird and mammal abundances declined by 58% (25 to 76%) and by 83% (72 to 90%) in hunted compared with unhunted areas. Bird and mammal populations were depleted within 7 and 40 kilometers from hunters’ access points (roads and settlements). Additionally, hunting pressure was higher in areas with better accessibility to major towns where wild meat could be traded. Mammal population densities were lower outside protected areas, particularly because of commercial hunting. Strategies to sustainably manage wild meat hunting in both protected and unprotected tropical ecosystems are urgently needed to avoid further defaunation.

Journal ArticleDOI
TL;DR: Easi-CRISPR solves the major problem of animal genome engineering, namely the inefficiency of targeted DNA cassette insertion, as treating an average of only 50 zygotes is sufficient to produce a correctly targeted allele in up to 100% of live offspring.
Abstract: Conditional knockout mice and transgenic mice expressing recombinases, reporters, and inducible transcriptional activators are key for many genetic studies and comprise over 90% of mouse models created. Conditional knockout mice are generated using labor-intensive methods of homologous recombination in embryonic stem cells and are available for only ~25% of all mouse genes. Transgenic mice generated by random genomic insertion approaches pose problems of unreliable expression, and thus there is a need for targeted-insertion models. Although CRISPR-based strategies were reported to create conditional and targeted-insertion alleles via one-step delivery of targeting components directly to zygotes, these strategies are quite inefficient. Here we describe Easi-CRISPR (Efficient additions with ssDNA inserts-CRISPR), a targeting strategy in which long single-stranded DNA donors are injected with pre-assembled crRNA + tracrRNA + Cas9 ribonucleoprotein (ctRNP) complexes into mouse zygotes. We show for over a dozen loci that Easi-CRISPR generates correctly targeted conditional and insertion alleles in 8.5–100% of the resulting live offspring. Easi-CRISPR solves the major problem of animal genome engineering, namely the inefficiency of targeted DNA cassette insertion. The approach is robust, succeeding for all tested loci. It is versatile, generating both conditional and targeted insertion alleles. Finally, it is highly efficient, as treating an average of only 50 zygotes is sufficient to produce a correctly targeted allele in up to 100% of live offspring. Thus, Easi-CRISPR offers a comprehensive means of building large-scale Cre-LoxP animal resources.

Journal ArticleDOI
Morad Aaboud, Alexander Kupco1, Peter Davison2, Samuel Webb3  +2944 moreInstitutions (220)
TL;DR: In this article, a search for new resonant and non-resonant high-mass phenomena in dielectron and dimuon fi nal states was conducted using 36 : 1 fb(-1) of proton-proton collision data.
Abstract: A search is conducted for new resonant and non-resonant high-mass phenomena in dielectron and dimuon fi nal states. The search uses 36 : 1 fb(-1) of proton-proton collision data, collected at root ...

Journal ArticleDOI
TL;DR: In this article, the shape of the acoustic gravitational wave and the velocity power spectra were explored using large-scale numerical simulations of a first order thermal phase transition in the early Universe, and the results showed that the predicted k−3 behavior, where k is the wave number, emerges clearly for detonations.
Abstract: We present results from large-scale numerical simulations of a first order thermal phase transition in the early Universe, in order to explore the shape of the acoustic gravitational wave and the velocity power spectra. We compare the results with the predictions of the recently proposed sound shell model. For the gravitational wave power spectrum, we find that the predicted k−3 behavior, where k is the wave number, emerges clearly for detonations. The power spectra from deflagrations show similar features, but exhibit a steeper high-k decay and an extra feature not accounted for in the model. There are two independent length scales: the mean bubble separation and the thickness of the sound shell around the expanding bubble of the low temperature phase. It is the sound shell thickness which sets the position of the peak of the power spectrum. The low wave number behavior of the velocity power spectrum is consistent with a causal k3, except for the thinnest sound shell, where it is steeper. We present parameters for a simple broken power law fit to the gravitational wave power spectrum for wall speeds well away from the speed of sound where this form can be usefully applied. We examine the prospects for the detection, showing that a LISA-like mission has the sensitivity to detect a gravitational wave signal from sound waves with an RMS fluid velocity of about 0.05c, produced from bubbles with a mean separation of about 10−2 of the Hubble radius. The shape of the gravitational wave power spectrum depends on the bubble wall speed, and it may be possible to estimate the wall speed, and constrain other phase transition parameters, with an accurate measurement of a stochastic gravitational wave background.

Journal ArticleDOI
15 Nov 2017-Joule
TL;DR: In this article, the authors describe insights from a complementary socio-technical approach that addresses the interdependent social, political, cultural, and technical processes of transitions, and articulates four lessons for managing low-carbon transitions.

Journal ArticleDOI
TL;DR: This first comprehensive analysis on the toxicity and teratogenic effects of the bisphenols BPA, BPS, BPF, and BPAF in zebrafish embryo-larvae and an assessment on their estrogenic mechanisms in an estrogen-responsive transgenic fish Tg(ERE:Gal4ff)(UAS:GFP) show that these BPA alternatives induce similar toxic and estrogenic effects to BPA and that BPAf is more potent than BPA.
Abstract: Bisphenol A (BPA), a chemical incorporated into plastics and resins, has estrogenic activity and is associated with adverse health effects in humans and wildlife. Similarly structured BPA analogues are widely used but far less is known about their potential toxicity or estrogenic activity in vivo. We undertook the first comprehensive analysis on the toxicity and teratogenic effects of the bisphenols BPA, BPS, BPF, and BPAF in zebrafish embryo-larvae and an assessment on their estrogenic mechanisms in an estrogen-responsive transgenic fish Tg(ERE:Gal4ff)(UAS:GFP). The rank order for toxicity was BPAF > BPA > BPF > BPS. Developmental deformities for larval exposures included cardiac edema, spinal malformation, and craniofacial deformities and there were distinct differences in the effects and potencies between the different bisphenol chemicals. These effects, however, occurred only at concentrations between 1.0 and 200 mg/L which exceed those in most environments. All bisphenol compounds induced estrogenic ...

Journal ArticleDOI
TL;DR: The VLA-COSMOS 3 GHz Large Project (VLBA) as mentioned in this paper provides the largest and deepest radio continuum survey at high angular resolution to date, bridging the gap between last generation and next-generation surveys.
Abstract: We present the VLA-COSMOS 3 GHz Large Project based on 384 h of observations with the Karl G. Jansky Very Large Array (VLA) at 3 GHz (10 cm) toward the two square degree Cosmic Evolution Survey (COSMOS) field. The final mosaic reaches a median rms of 2.3 μ Jy beam-1 over the two square degrees at an angular resolution of 0.75″. To fully account for the spectral shape and resolution variations across the broad (2 GHz) band, we image all data with a multiscale, multifrequency synthesis algorithm. We present a catalog of 10 830 radio sources down to 5σ , out of which 67 are combined from multiple components.Comparing the positions of our 3 GHz sources with those from the Very Long Baseline Array (VLBA)-COSMOS survey, we estimate that the astrometry is accurate to 0.01″ at the bright end (signal-to-noise ratio, S /N 3 GHz > 20). Survival analysis on our data combined with the VLA-COSMOS 1.4 GHz Joint Project catalog yields an expected median radio spectral index of α = −0.7. We compute completeness corrections via Monte Carlo simulations to derive the corrected 3 GHz source counts. Our counts are in agreement with previously derived 3 GHz counts based on single-pointing (0.087 square degrees) VLA data. In summary, the VLA-COSMOS 3 GHz Large Project simultaneously provides the largest and deepest radio continuum survey at high (0.75″) angular resolution to date, bridging the gap between last-generation and next-generation surveys.

Journal ArticleDOI
TL;DR: In this paper, the authors presented a catalogue of similar to 3000 submillimetre sources detected at 850 mu m over similar to 5 deg(2) surveyed as part of the SCUBA-2 Cosmology Legacy Survey (S2CLS).
Abstract: We present a catalogue of similar to 3000 submillimetre sources detected (>= 3.5 sigma) at 850 mu m over similar to 5 deg(2) surveyed as part of the James Clerk Maxwell Telescope (JCMT) SCUBA-2 Cosmology Legacy Survey (S2CLS). This is the largest survey of its kind at 850 mu m, increasing the sample size of 850 mu m selected submillimetre galaxies by an order of magnitude. The wide 850 mu m survey component of S2CLS covers the extragalactic fields: UKIDSS-UDS, COSMOS, Akari-NEP, Extended Groth Strip, Lockman Hole North, SSA22 and GOODS-North. The average 1s depth of S2CLS is 1.2 mJy beam(-1), approaching the SCUBA-2 850 mu m confusion limit, which we determine to be sigma(c) approximate to 0.8 mJy beam(-1). We measure the 850 mu m number counts, reducing the Poisson errors on the differential counts to approximately 4 per cent at S-850 approximate to 3 mJy. With several independent fields, we investigate field-to-field variance, finding that the number counts on 0.5 degrees-1 degrees scales are generally within 50 per cent of the S2CLS mean for S-850 > 3 mJy, with scatter consistent with the Poisson and estimated cosmic variance uncertainties, although there is a marginal (2 sigma) density enhancement in GOODS-North. The observed counts are in reasonable agreement with recent phenomenological and semi-analytic models, although determining the shape of the faint-end slope (S-850 10 mJy there are approximately 10 sources per square degree, and we detect the distinctive up-turn in the number counts indicative of the detection of local sources of 850 mu m emission

Journal ArticleDOI
TL;DR: In this article, the authors provide a detailed mathematical evaluation of a suggested biologically plausible implementation of the free energy principle (FEP) that has been widely used to develop the theory of the brain.

Journal ArticleDOI
TL;DR: This work presents a blueprint for a trapped ion–based scalable quantum computer module, making it possible to create a scalable quantumComputer architecture based on long-wavelength radiation quantum gates.
Abstract: The availability of a universal quantum computer may have a fundamental impact on a vast number of research fields and on society as a whole. An increasingly large scientific and industrial community is working toward the realization of such a device. An arbitrarily large quantum computer may best be constructed using a modular approach. We present a blueprint for a trapped ion–based scalable quantum computer module, making it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques, and are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength radiation–based quantum gate technology. To scale this microwave quantum computer architecture to a large size, we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high error–threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With appropriate adjustments, the proposed modules are also suitable for alternative trapped ion quantum computer architectures, such as schemes using photonic interconnects.

Journal ArticleDOI
TL;DR: The article lays out tips for research methodology before concluding with insights about technology itself, analytical processes associated with technology, and the framing and communication of results.
Abstract: What theories or concepts are most useful at explaining socio technical change? How can - or cannot - these be integrated? To provide an answer, this study presents the results from 35 semi-structured research interviews with social science experts who also shared more than two hundred articles, reports and books on the topic of the acceptance, adoption, use, or diffusion of technology. This material led to the identification of 96 theories and conceptual approaches spanning 22 identified disciplines. The article begins by explaining its research terms and methods before honing in on a combination of fourteen theories deemed most relevant and useful by the material. These are: Sociotechnical Transitions, Social Practice Theory, Discourse Theory, Domestication Theory, Large Technical Systems, Social Construction of Technology, Sociotechnical Imaginaries, Actor-Network Theory, Social Justice Theory, Sociology of Expectations, Sustainable Development, Values Beliefs Norms Theory, Lifestyle Theory, and the Unified Theory of Acceptance and Use of Technology. It then positions these theories in terms of two distinct typologies. Theories can be placed into five general categories of being centered on agency, structure, meaning, relations or norms. They can also be classified based on their assumptions and goals rooted in functionalism, interpretivism, humanism or conflict. The article lays out tips for research methodology before concluding with insights about technology itself, analytical processes associated with technology, and the framing and communication of results. An interdisciplinary theoretical and conceptual inventory has much to offer students, analysts and scholars wanting to study technological change and society.

Journal ArticleDOI
TL;DR: The emerging optical properties of the degraded solvent present challenges for spectroscopy of nanomaterial dispersions; most notably the possibility of observing solvent photoluminescence in the spectra of 2D materials such as MoS2, highlighting the need for stable solvents and exfoliation processes to minimise the influence of solvent degradation on the properties of liquid-exfoliated 2D material.
Abstract: N-methyl-2-pyrrolidone (NMP) has been shown to be the most effective solvent for liquid phase exfoliation and dispersion of a range of 2D materials including graphene, molybdenum disulphide (MoS2) and black phosphorus. However, NMP is also known to be susceptible to sonochemical degradation during exfoliation. We report that this degradation gives rise to strong visible photoluminescence of NMP. Sonochemical modification is shown to influence exfoliation of layered materials in NMP and the optical absorbance of the solvent in the dispersion. The emerging optical properties of the degraded solvent present challenges for spectroscopy of nanomaterial dispersions; most notably the possibility of observing solvent photoluminescence in the spectra of 2D materials such as MoS2, highlighting the need for stable solvents and exfoliation processes to minimise the influence of solvent degradation on the properties of liquid-exfoliated 2D materials.