scispace - formally typeset
Search or ask a question
Institution

University of Sussex

EducationBrighton, United Kingdom
About: University of Sussex is a education organization based out in Brighton, United Kingdom. It is known for research contribution in the topics: Population & Galaxy. The organization has 17385 authors who have published 44685 publications receiving 2005538 citations.


Papers
More filters
Book
01 Jan 1997
TL;DR: In this paper, Tidd, Bessant & Pavitt provide an integrative approach to the management of innovation at the operational and strategic levels, integrating market, organizational and technological change to improve the competitiveness of firms and effectiveness of other organizations.
Abstract: Managing Innovation provides readers with the knowledge to understand, and the skills to manage, innovation at the operational and strategic levels. Specifically, it integrates the management of market, organizational and technological change to improve the competitiveness of firms and effectiveness of other organizations. The management of innovation is inherently interdisciplinary and multifunctional and Tidd, Bessant & Pavitt provide an integrative approach to the subject. Two new perspectives are introduced through which to re-examine material presented in each chapter: sustaining versus disruptive innovation (a greater emphasis will be placed on disruptive innovation) and organizations versus networks (greater discussion of the network issues raised in each chapter). Provides more treatment of innovation in services. Greater internationalization of case examples will be provided e.g. more examples will be included from Asia and Latin America. Introduces discussion of the relationship between innovation and the environment.

3,300 citations

Journal ArticleDOI
TL;DR: Evidence from a selection of research topics relevant to pandemics is discussed, including work on navigating threats, social and cultural influences on behaviour, science communication, moral decision-making, leadership, and stress and coping.
Abstract: The COVID-19 pandemic represents a massive global health crisis. Because the crisis requires large-scale behaviour change and places significant psychological burdens on individuals, insights from the social and behavioural sciences can be used to help align human behaviour with the recommendations of epidemiologists and public health experts. Here we discuss evidence from a selection of research topics relevant to pandemics, including work on navigating threats, social and cultural influences on behaviour, science communication, moral decision-making, leadership, and stress and coping. In each section, we note the nature and quality of prior research, including uncertainty and unsettled issues. We identify several insights for effective response to the COVID-19 pandemic and highlight important gaps researchers should move quickly to fill in the coming weeks and months.

3,223 citations

Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +229 moreInstitutions (70)
TL;DR: In this paper, the cosmological parameter results from the final full-mission Planck measurements of the CMB anisotropies were presented, with good consistency with the standard spatially-flat 6-parameter CDM cosmology having a power-law spectrum of adiabatic scalar perturbations from polarization, temperature, and lensing separately and in combination.
Abstract: We present cosmological parameter results from the final full-mission Planck measurements of the CMB anisotropies. We find good consistency with the standard spatially-flat 6-parameter $\Lambda$CDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted "base $\Lambda$CDM" in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density $\Omega_c h^2 = 0.120\pm 0.001$, baryon density $\Omega_b h^2 = 0.0224\pm 0.0001$, scalar spectral index $n_s = 0.965\pm 0.004$, and optical depth $\tau = 0.054\pm 0.007$ (in this abstract we quote $68\,\%$ confidence regions on measured parameters and $95\,\%$ on upper limits). The angular acoustic scale is measured to $0.03\,\%$ precision, with $100\theta_*=1.0411\pm 0.0003$. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-$\Lambda$CDM cosmology, the inferred late-Universe parameters are: Hubble constant $H_0 = (67.4\pm 0.5)$km/s/Mpc; matter density parameter $\Omega_m = 0.315\pm 0.007$; and matter fluctuation amplitude $\sigma_8 = 0.811\pm 0.006$. We find no compelling evidence for extensions to the base-$\Lambda$CDM model. Combining with BAO we constrain the effective extra relativistic degrees of freedom to be $N_{\rm eff} = 2.99\pm 0.17$, and the neutrino mass is tightly constrained to $\sum m_ u< 0.12$eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base -$\Lambda$CDM at over $2\,\sigma$, which pulls some parameters that affect the lensing amplitude away from the base-$\Lambda$CDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. (Abridged)

3,077 citations

Book
17 Nov 1975
TL;DR: In this paper, the authors considered the problem of optimal control of Markov diffusion processes in the context of calculus of variations, and proposed a solution to the problem by using the Euler Equation Extremals.
Abstract: I The Simplest Problem in Calculus of Variations.- 1. Introduction.- 2. Minimum Problems on an Abstract Space-Elementary Theory.- 3. The Euler Equation Extremals.- 4. Examples.- 5. The Jacobi Necessary Condition.- 6. The Simplest Problem in n Dimensions.- II The Optimal Control Problem.- 1. Introduction.- 2. Examples.- 3. Statement of the Optimal Control Problem.- 4. Equivalent Problems.- 5. Statement of Pontryagin's Principle.- 6. Extremals for the Moon Landing Problem.- 7. Extremals for the Linear Regulator Problem.- 8. Extremals for the Simplest Problem in Calculus of Variations.- 9. General Features of the Moon Landing Problem.- 10. Summary of Preliminary Results.- 11. The Free Terminal Point Problem.- 12. Preliminary Discussion of the Proof of Pontryagin's Principle.- 13. A Multiplier Rule for an Abstract Nonlinear Programming Problem.- 14. A Cone of Variations for the Problem of Optimal Control.- 15. Verification of Pontryagin's Principle.- III Existence and Continuity Properties of Optimal Controls.- 1. The Existence Problem.- 2. An Existence Theorem (Mayer Problem U Compact).- 3. Proof of Theorem 2.1.- 4. More Existence Theorems.- 5. Proof of Theorem 4.1.- 6. Continuity Properties of Optimal Controls.- IV Dynamic Programming.- 1. Introduction.- 2. The Problem.- 3. The Value Function.- 4. The Partial Differential Equation of Dynamic Programming.- 5. The Linear Regulator Problem.- 6. Equations of Motion with Discontinuous Feedback Controls.- 7. Sufficient Conditions for Optimality.- 8. The Relationship between the Equation of Dynamic Programming and Pontryagin's Principle.- V Stochastic Differential Equations and Markov Diffusion Processes.- 1. Introduction.- 2. Continuous Stochastic Processes Brownian Motion Processes.- 3. Ito's Stochastic Integral.- 4. Stochastic Differential Equations.- 5. Markov Diffusion Processes.- 6. Backward Equations.- 7. Boundary Value Problems.- 8. Forward Equations.- 9. Linear System Equations the Kalman-Bucy Filter.- 10. Absolutely Continuous Substitution of Probability Measures.- 11. An Extension of Theorems 5.1,5.2.- VI Optimal Control of Markov Diffusion Processes.- 1. Introduction.- 2. The Dynamic Programming Equation for Controlled Markov Processes.- 3. Controlled Diffusion Processes.- 4. The Dynamic Programming Equation for Controlled Diffusions a Verification Theorem.- 5. The Linear Regulator Problem (Complete Observations of System States).- 6. Existence Theorems.- 7. Dependence of Optimal Performance on y and ?.- 8. Generalized Solutions of the Dynamic Programming Equation.- 9. Stochastic Approximation to the Deterministic Control Problem.- 10. Problems with Partial Observations.- 11. The Separation Principle.- Appendices.- A. Gronwall-Bellman Inequality.- B. Selecting a Measurable Function.- C. Convex Sets and Convex Functions.- D. Review of Basic Probability.- E. Results about Parabolic Equations.- F. A General Position Lemma.

3,027 citations

Journal ArticleDOI
TL;DR: Researchers are reporting promising results in engineering more-useful toxins and formulations, in creating transgenic plants that express pesticidal activity, and in constructing integrated management strategies to insure that these products are utilized with maximum efficiency and benefit.
Abstract: During the past decade the pesticidal bacterium Bacillus thuringiensis has been the subject of intensive research. These efforts have yielded considerable data about the complex relationships between the structure, mechanism of action, and genetics of the organism’s pesticidal crystal proteins, and a coherent picture of these relationships is beginning to emerge. Other studies have focused on the ecological role of the B. thuringiensis crystal proteins, their performance in agricultural and other natural settings, and the evolution of resistance mechanisms in target pests. Armed with this knowledge base and with the tools of modern biotechnology, researchers are now reporting promising results in engineering more-useful toxins and formulations, in creating transgenic plants that express pesticidal activity, and in constructing integrated management strategies to insure that these products are utilized with maximum efficiency and benefit.

3,011 citations


Authors

Showing all 17626 results

NameH-indexPapersCitations
Hyun-Chul Kim1764076183227
Carlos S. Frenk165799140345
Wei Li1581855124748
Geoffrey E. Hinton157414409047
Jeremy K. Nicholson14177380275
Andrew G. Clark140823123333
Edward C. Holmes13882485748
Alan D. Baddeley13746789497
Diego F. Torres13794872180
Jay Shendure13546676953
Brigid L.M. Hogan13233366486
Stephen P. Jackson13137276148
Alessandro Cerri1291244103225
Lily Asquith12886073626
Iacopo Vivarelli12887574484
Network Information
Related Institutions (5)
University of Manchester
168K papers, 6.4M citations

95% related

University of Oxford
258.1K papers, 12.9M citations

95% related

University College London
210.6K papers, 9.8M citations

94% related

University of Cambridge
282.2K papers, 14.4M citations

94% related

University of Edinburgh
151.6K papers, 6.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202389
2022353
20211,987
20202,206
20191,902
20181,903