scispace - formally typeset
Search or ask a question
Institution

University of Tennessee Health Science Center

EducationMemphis, Tennessee, United States
About: University of Tennessee Health Science Center is a education organization based out in Memphis, Tennessee, United States. It is known for research contribution in the topics: Population & Transplantation. The organization has 15716 authors who have published 26884 publications receiving 1176697 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Pathogenicity-adaptive, or pathoadaptive, mutations represent a genetic mechanism for enhancing bacterial virulence without horizontal transfer of specific virulence factors.

219 citations

Journal ArticleDOI
TL;DR: Focusing on the terpenes, the largest class of plant natural products, the basis of terpene diversity is investigated through analysis of multiple sequenced plant genomes and evidence is found for different mechanisms of pathway assembly in eudicots and monocots.
Abstract: Plants produce an array of specialized metabolites, including chemicals that are important as medicines, flavors, fragrances, pigments and insecticides. The vast majority of this metabolic diversity is untapped. Here we take a systematic approach toward dissecting genetic components of plant specialized metabolism. Focusing on the terpenes, the largest class of plant natural products, we investigate the basis of terpene diversity through analysis of multiple sequenced plant genomes. The primary drivers of terpene diversification are terpenoid synthase (TS) “signature” enzymes (which generate scaffold diversity), and cytochromes P450 (CYPs), which modify and further diversify these scaffolds, so paving the way for further downstream modifications. Our systematic search of sequenced plant genomes for all TS and CYP genes reveals that distinct TS/CYP gene pairs are found together far more commonly than would be expected by chance, and that certain TS/CYP pairings predominate, providing signals for key events that are likely to have shaped terpene diversity. We recover TS/CYP gene pairs for previously characterized terpene metabolic gene clusters and demonstrate new functional pairing of TSs and CYPs within previously uncharacterized clusters. Unexpectedly, we find evidence for different mechanisms of pathway assembly in eudicots and monocots; in the former, microsyntenic blocks of TS/CYP gene pairs duplicate and provide templates for the evolution of new pathways, whereas in the latter, new pathways arise by mixing and matching of individual TS and CYP genes through dynamic genome rearrangements. This is, to our knowledge, the first documented observation of the unique pattern of TS and CYP assembly in eudicots and monocots.

219 citations

Journal ArticleDOI
TL;DR: This study suggests that SLC22A1 expression is a composite surrogate for expression of various transporters relevant to imatinib IUR, which provides a mechanistic explanation for previous studies that have linked SLC 22A1 with the antitumor activity ofImatinib.
Abstract: Purpose: The activity of imatinib in leukemia has recently been linked with expression of the organic cation transporter 1 (OCT1) gene SLC22A1 . Here, we characterized the contribution of solute carriers to imatinib transport in an effort to further understand mechanisms involved in the intracellular uptake and retention (IUR) of the drug. Experimental Design: IUR of [ 3 H]imatinib was studied in Xenopus laevis oocytes and HEK293 cells expressing OATP1A2, OATP1B1, OATP1B3, OCT1-3, OCTN1-2, or OAT1-3. Gene expression was determined in nine leukemia cell lines using the Affymetrix U133 array. Results: Imatinib was not found to be a substrate for OCT1 in oocytes ( P = 0.21), whereas in HEK293 cells IUR was increased by only 1.20-fold relative to control cells ( P = 0.002). Furthermore, in 74 cancer patients, the oral clearance of imatinib was not significantly altered in individuals carrying reduced-function variants in SLC22A1 ( P = 0.99). Microarray analysis indicated that SLC22A1 was interrelated with gene expression of various transporters, including ABCB1, ABCC4, ABCG2 (negative), and OATP1A2 (positive). Imatinib was confirmed to be a substrate for the three efflux transporters ( P P = 0.0001). Conclusions: This study suggests that SLC22A1 expression is a composite surrogate for expression of various transporters relevant to imatinib IUR. This observation provides a mechanistic explanation for previous studies that have linked SLC22A1 with the antitumor activity of imatinib. Because of its high expression in the intestine, ciliary body, gliomas, and leukemia cells, OATP1A2 may play a key role in imatinib pharmacokinetics-pharmacodynamics.

219 citations

Journal ArticleDOI
TL;DR: Results suggest that, in the dopamine‐depleted state, glutamatergic inputs to the STN and reciprocal GPe–STN interconnections are both important for the generation and amplification of the oscillatory activity of STN neurons, which is subsequently transmitted to the GPi, thus contributing to the symptomatic expression of Parkinson’s disease.
Abstract: Parkinson's disease is characterized by degeneration of nigral dopaminergic neurons, leading to a wide variety of psychomotor dysfunctions. Accumulated evidence suggests that abnormally synchronized oscillations in the basal ganglia contribute to the expression of Parkinsonian motor symptoms. However, the mechanism that generates abnormal oscillations in a dopamine-depleted state remains poorly understood. We addressed this question by examining basal ganglia neuronal activity in two 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated Parkinsonian monkeys. We found that systemic administration of l-3,4-dihydroxyphenylalanine (l-DOPA; dopamine precursor) decreased abnormal neuronal oscillations (8-15 Hz) in the internal segment of the globus pallidus (GPi) and the subthalamic nucleus (STN) during the ON state when Parkinsonian signs were alleviated and during l-DOPA-induced dyskinesia. GPi oscillations and parkinsonian signs were suppressed by silencing of the STN with infusion of muscimol (GABA(A) receptor agonist). Intrapallidal microinjection of a mixture of 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP; N-methyl-d-aspartate receptor antagonist) and 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX; AMPA/kainate receptor antagonist) also decreased the oscillations in the GPi and the external segment of the globus pallidus (GPe). Neuronal oscillations in the STN were suppressed after intrasubthalamic microinjection of CPP/NBQX to block glutamatergic afferents of the STN. The STN oscillations were further reduced by muscimol inactivation of the GPe to block GABAergic inputs from the GPe. These results suggest that, in the dopamine-depleted state, glutamatergic inputs to the STN and reciprocal GPe-STN interconnections are both important for the generation and amplification of the oscillatory activity of STN neurons, which is subsequently transmitted to the GPi, thus contributing to the symptomatic expression of Parkinson's disease.

219 citations

Journal ArticleDOI
TL;DR: To compare currently available low-shrinkage composites with others regarding polymerization stress, volumetric shrinkage (total and post-gel), shrinkage rate and elastic modulus, seven BisGMA-based composites were tested.

219 citations


Authors

Showing all 15827 results

NameH-indexPapersCitations
George P. Chrousos1691612120752
Steven N. Blair165879132929
Bruce L. Miller1631153115975
Ralph A. DeFronzo160759132993
Frank J. Gonzalez160114496971
Robert G. Webster15884390776
Anne B. Newman15090299255
Ching-Hon Pui14580572146
Barton F. Haynes14491179014
Yoshihiro Kawaoka13988375087
Seth M. Steinberg13793680148
Richard J. Johnson13788072201
Kristine Yaffe13679472250
Leslie L. Robison13185464373
Gerardo Heiss12862369393
Network Information
Related Institutions (5)
University of Alabama at Birmingham
86.7K papers, 3.9M citations

97% related

Baylor College of Medicine
94.8K papers, 5M citations

97% related

Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

97% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

96% related

University of California, San Francisco
186.2K papers, 12M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202338
2022194
20211,699
20201,503
20191,401
20181,292